取球博弈蓝桥杯2016年省赛

两个人玩取球的游戏。
一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目。
如果无法继续取球,则游戏结束。
此时,持有奇数个球的一方获胜。
如果两人都是奇数,则为平局。

假设双方都采用最聪明的取法,
第一个取球的人一定能赢吗?
试编程解决这个问题。

输入格式:
第一行3个正整数n1 n2 n3,空格分开,表示每次可取的数目 (0<n1,n2,n3<100)
第二行5个正整数x1 x2 … x5,空格分开,表示5局的初始球数(0<xi<1000)

输出格式:
一行5个字符,空格分开。分别表示每局先取球的人能否获胜。
能获胜则输出+,
次之,如有办法逼平对手,输出0,
无论如何都会输,则输出-
例如,输入:
1 2 3
1 2 3 4 5
程序应该输出:

+0 + 0 -
再例如,输入:
1 4 5
10 11 12 13 15
程序应该输出:
0 - 0 + +
再例如,输入:
2 3 5
7 8 9 10 11
程序应该输出:

+0 0 0 0

代码:



import java.util.Arrays;
import java.util.Scanner;

public class 取球博弈 {
	static int []n=new int[3];//三个取球数目
	
	public static void main(String arg[]) {
		Scanner sc= new Scanner(System.in);
		for(int i=0;i<3;i++) {
			
			n[i]=sc.nextInt();
			
			
		}
		Arrays.sort(n);//排序
		for(int j=0;j<5;j++){
			int num=sc.nextInt();
			char res=f(num,0,0);
			System.out.print(res+" ");
			
	  }
		
		

	}
	
	static char state[][][]= new char[1000][2][2];
	
	private static char f(int num,int me,int you) {
		if(num<n[0]) {//出口,已经不能再次取球了
			
			if((me&1)==1&&(you&1)==0) {
				return '+';
				
			}
			
			else if((me&1)==0&&(you&1)==1) {
				return '-';
			}
			
            else {
				
				return '0';
             }
		}
		boolean flag=false;//是否平局
		if(state[num][me][you]!='\0') {//有记忆的递归
			
			return state[num][me][you];
			
		}
		for(int i=0;i<3;i++) {
			if(num>=n[i]) {
		     char res=f(num-n[i],you,(n[i]&1)==0?me:(1-me));
				if(res=='-') {
					state[num][me][you]='+';
					return '+';
					
				}
				else if(res=='0') {
					
					flag=true;
					
				}
			}
		}
		if(flag==true) {
			state[num][me][you]='0';
			return '0';
			
		}
		else {
			state[num][me][you]='-';
			return '-';
			
		}
		
	}
	


}

思路
首先采用的方法是进行递归,因为子问题都是类似的。
注意的点:
1.要对n[]进行排序,因为设置出口的时候要和取球最小值进行比较。
2.注意进行递归的时候,要将取球主动权交给对方,所以me和you要进行互换。
3.要进行有记忆的递归,可以提升效率,但是要注意的是此时相应的me和you不再是双方手里所持的球数,而是所持球数的奇偶性,因为最终无论双方手里的球数是什么数字,只有奇偶性是有影响的。而且使用奇偶性可以保证最大程度的匹配之前记忆过的局面(所剩球数以及双方手中球的奇偶性),而不会因为尽管所剩球数以及双方手中球的奇偶性和之前记忆过的局面相同但是因为双方手里的球数和之前记忆的不一样导致匹配不上,相当于做了已经做过的递归,这很浪费时间。
要理解这条就要理解最终的胜负只和当前的所剩球数以及双方的手中的球数的奇偶性有关。
4.要注意并不是返回res,res是对方的是否胜利。应该与对方相反或者平局的话返回0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值