一: Zero-mean normalization(z-score标准化)
(1) 将原始数据集归一化为均值为0、方差1的数据集
(2) 该种归一化方式要求原始数据的分布可以近似为高斯分布,否则归一化的效果会变得很糟糕。
应用场景:在分类、聚类算法中,需要使用距离来度量相似性的时候(比如K-means等聚类算法 中),或者使用PCA技术进行降维的时候,Z-score standardization表现更好。
1:调用preprocessing库的scale()函数
from sklearn import preprocessing
import numpy as np
X_train = np.array([[ 1., -1., 2.],
[ 2.</