路径规划算法解析与实践

 task::

decider是决策

1.换道

首先考虑由参考器生成线生成的数量,如果只有一条参考线就不会产生换道,如果多条参考线,机会根据障碍物是否满足条件而做出决策

2.路径重用

 如果上一个路径没有与障碍物发生碰撞,就会沿用上一个路径,防止生成路径不稳定。

如果重用就会直接进行速度规划,如果存在碰撞,就路径规划

3.借道

4.路径边界

 Nudge::对障碍物的绕行

 5.路径优化

6.路径评价

 7.路径决策

该决策用在后面速度规划上

 基于二次规划的路径规划算法::

 有很多现成的求解器,Apollo用的OSQP

定义优化变量、目标函数设计【是由优化变量组起来的函数】、满足约束,带入求解器求解::

 

设置系数矩阵

求解

获取优化结果

代码执行流程

 1.换道决策

 产生的换到状态会保存到injector中,injector在planning中是一个单独的类,可以在不同帧(?)之间共用,所以换道也是观察好几帧产生的决策。

2.借道

 保存到referenceline_info里,

3.路径边界

 最后通过SetCandiadatePathBoundaries函数保存到referenceline_info里,下一步调用

4.路径优化

 在piecewise_jerk_problem中进行求解,设置权重系数和约束,最后在Optimize中优化求解

 然后保存到referenceline_info中

5.选择最优路径

 两两比较,然后选择的路径信息保存到referenceline_info中的mutable_path_data中同时也保存障碍物的信息,供速度规划进一步处理,在ST图中使用。

算法实践

 

 在Layer Manu的planning可以选择边界的可视化

二次规划路径规划的所有参数,权重项,配置文件

planning.conf中存的是命令行参数,FLAGS参数,在整个代码里是一个全局变量,所以可以在planning.conf中修改。

【FLAGS::    】

思考::

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值