机器学习-实验二

实验二

一、实验目的

  1. 理解和掌握PCA原理

  2. 利用PCA降维,辅助完成一项实战内容。

二、实验原理

对于矩阵A,有一组特征向量v,将这组向量进行正交化单位化,就能得到一组正交单位向量。特征值分解的工作就是就是将矩阵A分解为如下所示三个矩阵的乘积:
Λ = Q − 1 AQ = Q T AQ {\bf \Lambda} = \textbf Q^{-1}\textbf A \textbf Q = \textbf Q^{T}\textbf A\textbf Q Λ=Q1AQ=QTAQ
其中,Q是矩阵A的特征向量组成的矩阵, Λ \Lambda Λ则是一个对角阵,其对角线上的元素就是特征值。

矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推。

三、算法流程

输入

样本集 D = { x 1 , x 2 , … … x m } D = \{x_1,x_2,……x_m\} D={x1,x2,xm}

低维空间维数 d t d^t dt

过程

  1. 对所有样本进行中心化: x i ← x i − 1 m ∑ i = 1 m x i x_i \leftarrow x_i - \frac 1m \sum^m_{i = 1} x_i xixim1i=1mxi;
  2. 计算样本的协方差矩阵 XX T \textbf {XX}^T XXT;
  3. 对协方差矩阵 XX T \textbf {XX}^T XXT 做特征值分解;
  4. 取最大的 d t d^t dt 个特征值所对应的特征向量 w 1 , w 2 , … … , w d t w_1,w_2,……,w_{d^t} w1,w2,,wdt.

输出

投影矩阵 W = ( w 1 , w 2 , … … , w d t ) \textbf W = (w_1,w_2,……,w_{d^t}) W=(w1,w2,,wdt).

人脸识别步骤

  1. 利用给定的数据集,执行上述算法,得到投影矩阵 W \textbf W W;

  2. 计算训练集的投影后的矩阵: P = WX \textbf P = \textbf {WX} P=WX;

  3. 加载一个测试图片 T T T,测试图片投影后的矩阵为: TestT = WT \textbf {TestT} = \textbf{WT} TestT=WT;

  4. 计算 T e s t T \bf TestT TestT P P P 中每个样本距离,选出最近的那个即可。

  5. 显示投影前后的两张图片。

四、代码和执行结果展示

编写代码

使用 lfw_people 数据集中的人脸照片作为训练集

from time import time
import logging
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_lfw_people
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.decomposition import PCA
from sklearn.svm import SVC

logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)
n_samples, h, w = lfw_people.images.shape

X = lfw_people.data
n_features = X.shape[1]

y = lfw_people.target
target_names = lfw_people.target_names
n_classes = target_names.shape[0]

print("Total dataset size:")
print("n_samples: %d" % n_samples)
print("n_features: %d" % n_features)
print("n_classes: %d" % n_classes)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.25, random_state=42)
n_components = 150

print("Extracting the top %d eigenfaces from %d faces"
      % (n_components, X_train.shape[0]))
t0 = time()
pca = PCA(n_components=n_components, svd_solver='randomized',
          whiten=True).fit(X_train)
eigenfaces = pca.components_.reshape((n_components, h, w))

print("Projecting the input data on the eigenfaces orthonormal basis")
t0 = time()
X_train_pca = pca.transform(X_train)
X_test_pca = pca.transform(X_test)
print("done in %0.3fs" % (time() - t0))
print("Fitting the classifier to the training set")
t0 = time()
param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],
              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }

clf = GridSearchCV(
    SVC(kernel='rbf', class_weight='balanced'), param_grid)
clf = clf.fit(X_train_pca, y_train)
t0 = time()
y_pred = clf.predict(X_test_pca)

print(classification_report(y_test, y_pred, target_names=target_names))
print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):
    plt.figure(figsize=(1.8 * 2, 2.4 * 1))
    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)
    for i in range(2):
        plt.subplot(1, 2, i + 1)
        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)
        plt.title(titles[i], size=12)
        plt.xticks(())
        plt.yticks(())

def title(y_pred, y_test, target_names, i):
    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]
    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]
    return '%s' % (true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)
                     for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)
plt.show()

样例测试

成功识别了 George Walker Bush 的人脸

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,Fisher判别分析是一种分类算法,它可以将多维数据投影到一维空间,并且保证投影后的数据能够最大化类间距离,最小化类内距离。现在我们来实现一下。 首先导入需要的库:numpy、pandas 和 matplotlib。 ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt ``` 接下来,我们将给定的数据导入到程序中。 ```python # 加载数据 data = pd.read_csv('data.csv') print(data.head()) ``` 输出结果: ``` x1 x2 y 0 12.882292 10.228199 1 1 10.658871 -1.516233 1 2 -0.027255 -7.205887 0 3 9.993827 -0.792893 1 4 9.297497 -2.005293 1 ``` 我们可以看到,数据集中有两个特征 x1 和 x2,以及一个标签 y。y 的取值为 0 或 1,表示两个不同的类别。 接下来,我们需要将数据集分成两个类别的样本集。我们可以使用 pandas 的 groupby 函数,将数据按照 y 的取值进行分组。 ```python # 将数据分成两个类别 grouped = data.groupby('y') group1 = grouped.get_group(0) group2 = grouped.get_group(1) ``` 现在我们可以分别计算两个类别的均值向量和协方差矩阵。 ```python # 计算两个类别的均值向量和协方差矩阵 mean1 = group1.mean()[['x1', 'x2']].values mean2 = group2.mean()[['x1', 'x2']].values cov1 = group1[['x1', 'x2']].cov().values cov2 = group2[['x1', 'x2']].cov().values ``` 计算完均值向量和协方差矩阵后,我们需要计算 Fisher 系数,以便找到最佳的投影方向。Fisher 系数的计算公式为: $$ F=\frac{(m_1-m_2)^2}{s_1^2+s_2^2} $$ 其中,$m_1$ 和 $m_2$ 分别表示两个类别的均值向量,$s_1^2$ 和 $s_2^2$ 分别表示两个类别的协方差矩阵的迹。 ```python # 计算 Fisher 系数 m1_m2 = mean1 - mean2 s1_s2 = np.trace(cov1) + np.trace(cov2) F = np.dot(m1_m2.T, m1_m2) / s1_s2 ``` 计算完 Fisher 系数后,我们需要将数据投影到一维空间。投影的公式为: $$ y=w^Tx $$ 其中,$y$ 表示投影后的结果,$w$ 是投影向量,$x$ 是原始数据。 我们可以通过最大化 Fisher 系数来找到最佳的投影向量 $w$。最佳的投影向量是两个类别的均值向量之差。 ```python # 找到最佳的投影向量 w = (mean1 - mean2) / np.linalg.norm(mean1 - mean2) ``` 现在我们可以使用投影向量 $w$ 将数据投影到一维空间。 ```python # 投影数据到一维空间 projected1 = np.dot(group1[['x1', 'x2']].values, w) projected2 = np.dot(group2[['x1', 'x2']].values, w) ``` 最后,我们可以将投影后的数据可视化。 ```python # 可视化投影后的数据 plt.scatter(projected1, np.zeros(projected1.shape), color='red') plt.scatter(projected2, np.zeros(projected2.shape), color='blue') plt.show() ``` 输出结果: ![Fisher判别分析](https://img-blog.csdnimg.cn/20210728112406488/4010d6ac693c4f2b9c1cda9c7b4cd2c1.png) 完整代码如下:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值