线性代数复习

线性代数知识清单

一 行列式

概念

余子式和代数余子式

记代数余子式为 ( − 1 ) m + n M i j (-1)^{m+n} M_{ij} (1)m+nMij,则有余子式 M i j M_{ij} Mij

常用行列式相关公式

  1. $|\textbf{ A}^T | = |\textbf{A}| $

  2. ∣ k A ∣ = k n ∣ A ∣ |k \textbf{A}| = k^n |\textbf{A}| kA=knA

  3. A , B \textbf{A},\textbf{B} A,B 均为 n n n 阶, ∣ AB ∣ = ∣ A ∣ ∣ B ∣ |\textbf{AB}| = |\textbf{A}||\textbf{B}| AB=AB

  4. ∣ A − 1 ∣ = 1 ∣ A ∣ |\textbf{A}^{-1}|= \frac 1{|\textbf{A}|} A1=A1

  5. 伴随矩阵相关

    ∣ A ∗ ∣ = ∣ A ∣ n − 1 |\textbf{A}^*| =|\textbf{A}|^{n-1} A=An1

    A A ∗ = A ∗ A = ∣ A ∣ E \textbf{A}\textbf{A}^* = \textbf{A}^* \textbf{A} = |\textbf{A}| \textbf{E} AA=AA=AE

  6. 矩阵行列式与特征值

    ∣ A ∣ = ∏ λ i |\textbf{A}| = \prod {\lambda _i} A=λi

特殊的行列式

  1. 上下三角行列式

    ∣ c 1 c 2 … c n ∣ = ∏ i = 0 n c i \begin{vmatrix} c_1 & & & & \\ & c_2 & & \\ & & & …&\\ & & & & c_n \end{vmatrix} = \prod\limits_{i = 0}^n c_i c1c2cn=i=0nci

  2. 副对角线的 n 阶行列式

    ∣ c n c n − 1 … c 1 ∣ = ( − 1 ) m + n ∏ i = 1 n c i \left| \begin{array}{cccc} & & & &c_n \\ & & & c_{n-1} & \\ & & … & \\ c_1 & & & \end{array} \right| = (-1)^{m+n}\prod_{i = 1}^n c_i c1cn1cn=(1)m+ni=1nci

  3. 两个特殊的拉普拉斯矩阵

    ∗ * 表示任意矩阵

    其特征为一个 0 0 0 行列式分布在对角线上

    A , B A,B A,B 分别为 m , n m,n m,n 阶的矩阵(行列式)

    • 0 0 0 行列式在副对角线上

      ∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix}\textbf A & * \\ O & B\end{vmatrix} = \begin{vmatrix}A & O\\ * & B\end{vmatrix} =|A| \cdot|B| AOB=AOB=AB

    • 0 0 0 行列式在副对角线上

      ∣ ∗ A B O ∣ = ∣ O A B ∗ ∣ = ( − 1 ) m n ∣ A ∣ ⋅ ∣ B ∣ \begin{vmatrix}* & A \\ B & O\end{vmatrix} = \begin{vmatrix}O & A \\ B & *\end{vmatrix} = (-1)^{mn}|A|\cdot|B| BAO=OBA=(1)mnAB

  4. 范德蒙行列式

    若行列式的形式满足第一行全为1,第 n n n 行各元素是第二行对应元素的 n − 1 n-1 n1 次幂,则有

    KaTeX parse error: Expected group after '_' at position 183: …matrix} = \prod_̲\limits{1\leq i…
    以三阶行列式为例:

    ∣ 1 1 1 x 1 x 2 x 3 x 1 2 x 2 2 x 3 2 ∣ = ( x 2 − x 1 ) ( x 3 − x 1 ) ( x 3 − x 2 ) \begin{vmatrix}1 & 1 & 1\\x_1 & x_2 & x_3 \\ x^2_1 & x_2^2 & x_3^2\end{vmatrix} = (x_2-x_1)(x_3-x_1)(x_3-x_2) 1x1x121x2x221x3x32=(x2x1)(x3x1)(x3x2)

二 矩阵

常用公式

矩阵的转置

∣ A T ∣ = ∣ A ∣ |\textbf A^T| = |\textbf A| AT=A

( A + B ) T = A T + B T (\textbf{A} +\textbf{B})^{T} = \textbf{A}^T + \textbf{B}^T (A+B)T=AT+BT

( k A ) T = k A T (k\textbf A)^T = k \textbf A^T (kA)T=kAT

( AB ) T = B T A T (\textbf{AB})^T=\textbf B^T\textbf A^T (AB)T=BTAT

伴随矩阵

A A ∗ = A ∗ A = ∣ A ∣ E \textbf A \textbf A^* = \textbf A^*\textbf A = |\textbf A|\textbf E AA=AA=AE

( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A (\textbf A^*)^{-1} = (\textbf A ^{-1})^* = \frac{1}{|\textbf A|} \textbf A (A)1=(A1)=A1A

( k A ) ∗ = k n − 1 A ∗ (k \textbf A)^* = k^{n-1}\textbf A^{*} (kA)=kn1A

( A ∗ ) T = ( A T ) ∗ (\textbf A^*)^T = (\textbf A^T)^* (A)T=(AT)

∣ A ∗ ∣ = ∣ A ∣ n − 1 |\textbf A^*| = |\textbf A|^{n-1} A=An1

( A ∗ ) ∗ = ∣ A ∣ n − 2 A (\textbf A^*)^* = |\textbf A|^{n-2}\textbf A (A)=An2A

逆矩阵

二阶(可逆)矩阵的逆:主对角线元素互换、副对角线元素变号
[ a b c d ] − 1 = [ d − b − c a ] \begin{bmatrix}a & b \\ c & d\end{bmatrix} ^{-1} = \begin{bmatrix}d & -b \\ -c & a\end{bmatrix} [acbd]1=[dcba]
( k A ) − 1 = 1 k A − 1 (k \textbf A)^{-1} = \frac 1k \textbf A^{-1} (kA)1=k1A1

( AB ) − 1 = B − 1 A − 1 (\textbf{AB})^{-1}=\textbf B^{-1}\textbf A^{-1} (AB)1=B1A1

( A T ) − 1 = ( A − 1 ) T (\textbf A^T)^{-1 } = (\textbf A^{-1})^T (AT)1=(A1)T

∣ A − 1 ∣ = 1 ∣ A ∣ = ∣ A ∣ − 1 |\textbf A^{-1}| = \frac 1 {|\textbf A|} = |\bf A|^{-1} A1=A1=A1

初等矩阵

左乘初等矩阵:矩阵等价初等矩阵的行变换

右乘初等矩阵:矩阵等价初等矩阵的列变换

分块矩阵计算

[ A B C D ] T = [ A T B T C T D T ] \begin{bmatrix}\textbf A & \textbf B \\ \textbf C & \textbf D\end{bmatrix}^T = \begin{bmatrix}\textbf A^T & \textbf B^T \\ \textbf C^T & \textbf D^T\end{bmatrix} [ACBD]T=[ATCTBTDT]

[ B O O C ] − 1 = [ B − 1 O O C − 1 ] \begin{bmatrix}\textbf B & \textbf O \\ \textbf O & \textbf C\end{bmatrix} ^{-1} = \begin{bmatrix}\textbf B^{-1} & \textbf O \\ \textbf O & \textbf C^{-1}\end{bmatrix} [BOOC]1=[B1OOC1]

[ O B C O ] − 1 = [ O C − 1 B − 1 O ] \begin{bmatrix}\textbf O & \textbf B \\ \textbf C & \textbf O\end{bmatrix} ^{-1} = \begin{bmatrix}\textbf O & \textbf C^{-1} \\ \textbf B^{-1} & \textbf O\end{bmatrix} [OCBO]1=[OB1C1O]

矩阵的秩

r ( A ) = r ( A T ) r(\textbf A) = r(\textbf A^T) r(A)=r(AT)

r ( A T A ) = r ( A ) r(\textbf A^T\textbf A) = r(\textbf A) r(ATA)=r(A)

  • k ≠ 0 k \neq 0 k=0

    r ( k A ) = r ( A ) r(k\textbf A) = r(\textbf A) r(kA)=r(A)

    r ( A + B ) ≤ r ( A ) + r ( B ) r(\textbf A+ \textbf B) \leq r(\textbf A) + r(\textbf B) r(A+B)r(A)+r(B)

  • A \bf A A 可逆

    r ( AB ) = r ( BA ) = r ( B ) r(\textbf{AB}) =r(\textbf{BA}) = r(\textbf B) r(AB)=r(BA)=r(B)

  • 分块矩阵

    $r(\begin{bmatrix}\textbf A & \textbf O\\textbf O & \textbf B\end{bmatrix}) = r(\textbf A) + r(\textbf B) $

r ( A ∗ ) = { n      r ( A ) = n 1      r ( A ) = n − 1 0      r ( A ) < n − 1 r(\bold A^*) = \begin{cases}n \ \ \ \ r(\bold A) = n\\1\ \ \ \ r(\bold A) = n-1\\0 \ \ \ \ r(\bold A) < n-1 \end{cases} r(A)=n    r(A)=n1    r(A)=n10    r(A)<n1

特殊矩阵的 n n n 次幂

  • r ( A ) = 1 r(\bold A)=1 r(A)=1

    A n = l n − 1 A \bold A^n = l^{n-1}\bold A An=ln1A

    l l l A \textbf A A 的迹

  • 相似矩阵 A ∼ B \bold A \sim \bold B AB

    P − 1 A n P = B n \bold P^{-1} \bold A^n \bold P = \bold B^n P1AnP=Bn

  • 对角矩阵的 n n n 次幂

    [ c 1 c 2 … c k ] n = [ c 1 n c 2 n … c k n ] \left[ \begin{array}{cccc} c_1 & & & & \\ & c_2 & & \\ & & & …&\\ & & & & c_k \end{array} \right]^n = \left[ \begin{array}{cccc} c_1^n & & & & \\ & c_2^n & & \\ & & & …&\\ & & & & c_k^n \end{array} \right] c1c2ckn=c1nc2nckn

初等矩阵的逆矩阵

  • 两行交换的初等矩阵

    A = A − 1 \textbf A = \textbf A^{-1} A=A1,即矩阵不变

  • k × k \times k×某行的初等矩阵

    该行取倒数

    例: A = [ 1 0 0 0 2 0 0 0 1 ] \textbf A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 2 &0 \\ 0 & 0 & 1\end{bmatrix} A=100020001,则 $\textbf A^{-1} =\begin{bmatrix}1 & 0 & 0 \ 0 & \frac 12 &0 \ 0 & 0 & 1\end{bmatrix} $

  • 某行 + k × +k\times +k× 另一行的初等矩阵

    倍加的部分取相反数,其余部分不变

    例: A = [ 1 0 0 0 1 − 2 0 0 1 ] \textbf A = \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 &-2 \\ 0 & 0 & 1\end{bmatrix} A=100010021,则 $\textbf A^{-1} = \begin{bmatrix}1 & 0 & 0 \ 0 & 1 &2 \ 0 & 0 & 1\end{bmatrix} $

三 向量

(列)向量相乘

n n n 维列向量 α , β \alpha,\beta α,β,有结论

α β T , β α T , α α T , β β T , ( A α ) ( A α ) T , ( B β ) ( B β ) T \alpha\beta^T,\beta\alpha^T,\alpha\alpha^T,\beta\beta^T,(\textbf A\alpha)(\textbf A \alpha)^T,(\textbf B\beta)(\textbf B \beta)^T αβT,βαT,ααT,ββT,(Aα)(Aα)T,(Bβ)(Bβ)T 都是矩阵,有 r = 1 r = 1 r=1

特别的,对于 α α T , β β T , ( A α ) ( A α ) T , ( B β ) ( B β ) T \alpha\alpha^T,\beta\beta^T,(\textbf A\alpha)(\textbf A \alpha)^T,(\textbf B\beta)(\textbf B \beta)^T ααT,ββT,(Aα)(Aα)T,(Bβ)(Bβ)T,他们都是对称矩阵

对于 α T β , β T α , α T α , β T β , ( A α ) T ( A α ) , ( B β ) T ( B β ) \alpha^T\beta,\beta^T\alpha,\alpha^T\alpha,\beta^T\beta,(\textbf A\alpha)^T(\textbf A \alpha),(\textbf B\beta)^T(\textbf B \beta) αTβ,βTα,αTα,βTβ(Aα)T(Aα),(Bβ)T(Bβ) 他们都是 ≥ 0 \geq0 0 的数

α T α , β T β , ( A α ) T ( A α ) , ( B β ) T ( B β ) \alpha^T\alpha,\beta^T\beta,(\textbf A\alpha)^T(\textbf A \alpha),(\textbf B\beta)^T(\textbf B \beta) αTα,βTβ(Aα)T(Aα),(Bβ)T(Bβ) 一一对应 α α T , β β T , ( A α ) ( A α ) T , ( B β ) ( B β ) T \alpha\alpha^T,\beta\beta^T,(\textbf A\alpha)(\textbf A \alpha)^T,(\textbf B\beta)(\textbf B \beta)^T ααT,ββT,(Aα)(Aα)T,(Bβ)(Bβ)T 的迹

线性相关的判断

有向量组 [ α 1 , α 2 , … … α n ] = A [\alpha_1,\alpha_2,……\alpha_n] = \bf A [α1,α2,αn]=A

相关、无关的定义

当且仅当 k 1 = k 2 = k 3 = … … = k n = 0 k_1 = k_2 = k_3 =…… = k_n = 0 k1=k2=k3==kn=0 时,才有 k 1 α ⃗ 1 + k 2 α ⃗ 2 + … … + k n α ⃗ n = 0 k_1\vec \alpha_1 + k_2 \vec \alpha_2 +……+k_n\vec \alpha_n = 0 k1α 1+k2α 2++knα n=0 ,则向量组线性无关

线性表出

线性表出的基本定义

向量 β \boldsymbol{\beta} β 能由向量组 ( α 1 , α 2 , α 3 ) (\boldsymbol{\alpha}_1, \boldsymbol {\alpha }_2, \boldsymbol{\alpha }_3) (α1,α2,α3) 线性表出,其中 α \boldsymbol {\alpha } α 都是列向量

即存在不全为 0 0 0 的系数 k 1 , k 2 , k 3 k_1,k_2,k_3 k1,k2,k3,使得
k 1 α 1 + k 2 α 2 + k 3 α 3 = β k_1 \boldsymbol{\alpha}_1+ k_2 \boldsymbol{\alpha}_2+ k_3 \boldsymbol{\alpha}_3 = \boldsymbol{\beta} k1α1+k2α2+k3α3=β

能否线性表出

写作矩阵乘法,即方程组
( α 1 , α 2 , … , α s ) ⋅ [ k 1 k 2 … k s ] = β (\boldsymbol{\alpha}_1, \boldsymbol {\alpha }_2, …,\boldsymbol{\alpha }_s) \cdot \begin{bmatrix}k_1 \\ k_2 \\ …\\k_s\end{bmatrix} = \boldsymbol{\beta} (α1,α2,,αs)k1k2ks=β
可转化为增广矩阵
[ α 1 α 2 … α s β ] \left[ \begin{array}{cccc:c} \boldsymbol{\alpha}_1& \boldsymbol {\alpha }_2& …&\boldsymbol{\alpha }_s & \boldsymbol{\beta} \end{array} \right] [α1α2αsβ]
即对应方程否有解、有唯一解或无穷多解的问题

抑或线性表出时秩的关系
r ( α 1 , α 2 , … … , α s ) = r ( α 1 , α 2 , … , α s , β ) r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2,……,\boldsymbol{\alpha}_s) = r(\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,…,\boldsymbol{\alpha}_s,\boldsymbol{\beta}) r(α1,α2,,αs)=r(α1,α2,,αs,β)

向量组的线性表出
秩的问题

向量组 A \Alpha A 可以由向量组 B \Beta B 线性表出 $\rightarrow $ r ( A ) ≤ r ( B ) r(\Alpha) \leq r(\Beta) r(A)r(B)

向量组 B \Beta B 不能由向量组 A \Alpha A 线性表出 → r ( A ) < r ( B ) \to r(\Alpha) < r(\Beta) r(A)<r(B)

方程组解的问题

向量组 ( β 1 , β 2 , … , β s ) (\boldsymbol{\beta}_1 ,\boldsymbol{\beta}_2,…,\boldsymbol{\beta}_s) (β1,β2,,βs) 能由向量组 ( α 1 , α 2 , … , α s ) (\boldsymbol{\alpha}_1, \boldsymbol {\alpha }_2,…, \boldsymbol{\alpha }_s) (α1,α2,,αs) 线性表出,其中 α i , i ∈ ( 1 , s ) \boldsymbol {\alpha_i },i\in(1,s) αi,i(1,s) 都是列向量
( α 1 , α 2 , … , α s ) ⋅ [ k 11 k 12 … k 1 s k 21 k 22 … k 2 s … … … … k s 1 k s 2 … k s s ] = ( β 1 , β 2 , … , β s ) (\boldsymbol{\alpha}_1, \boldsymbol {\alpha }_2,…, \boldsymbol{\alpha }_s) \cdot \begin{bmatrix}k_{11} & k_{12} &… & k_{1s}\\ k_{21} & k_{22} &…& k_{2s}\\… &… &… &… \\ k_{s1} & k_{s2} & … &k _ {ss}\end{bmatrix} = (\boldsymbol{\beta}_1,\boldsymbol{\beta}_2,…,\boldsymbol{\beta}_s) (α1,α2,,αs)k11k21ks1k12k22ks2k1sk2skss=(β1,β2,,βs)
可转化为线性方程组
[ ( α 1 α 2 … α s β 1 β 2 … β s ] \left[ \begin{array}{cccc:cccc} ({\alpha}_1& \boldsymbol {\alpha }_2&… &{\alpha }_s & {\beta}_1 &{\beta}_2 &…& {\beta }_s \end{array} \right] [(α1α2αsβ1β2βs]
中的每一个线性方程
[ α 1 α 2 … α s β i ] \left[ \begin{array}{cccc:c} \boldsymbol{\alpha}_1& \boldsymbol {\alpha }_2& …&\boldsymbol{\alpha }_s & \boldsymbol{\beta_i} \end{array} \right] [α1α2αsβi]
是否有解、有唯一解或无穷多解的问题

向量组等价

向量组 α 1 , α 2 , … … α s \alpha_1,\alpha_2,……\alpha_s α1,α2,αs 和向量组 β 1 , β 2 , … … β n \beta_1,\beta_2,……\beta_n β1,β2,βn 等价 $\iff r(\alpha_1,\alpha_2,……\alpha_s) = r(\beta_1,\beta_2,……\beta_n) $

正交矩阵与正交化

正交化

相似矩阵必定可以通过正交矩阵相似对角化

施密特正交化

将三个线性无关的向量 α ⃗ 1 , α ⃗ 2 , α ⃗ 3 \vec \alpha_1,\vec \alpha_2,\vec \alpha_3 α 1,α 2,α 3 化为两两垂直、长度为 1 1 1 的向量

β ⃗ 1 = α ⃗ 1 \vec\beta_1 = \vec \alpha_1 β 1=α 1

β ⃗ 2 = α ⃗ 2 − ( α ⃗ 2 , β ⃗ 1 ) ( β ⃗ 1 , β ⃗ 1 ) β ⃗ 1 \vec \beta_2 = \vec \alpha_2 - \frac{(\vec \alpha_2,\vec \beta_1)}{(\vec\beta_1,\vec \beta_1)}\vec \beta_1 β 2=α 2(β 1,β 1)(α 2,β 1)β 1

β ⃗ 3 = α ⃗ 3 − ( α ⃗ 3 , β ⃗ 1 ) ( β ⃗ 1 , β ⃗ 1 ) β ⃗ 1 − ( α ⃗ 3 , β ⃗ 2 ) ( β ⃗ 2 , β ⃗ 2 ) β ⃗ 2 \vec \beta_3 = \vec \alpha_3-\frac{(\vec \alpha_3,\vec \beta_1)}{(\vec \beta_1,\vec \beta_1)}\vec \beta_1 - \frac{(\vec \alpha_3,\vec \beta_2)}{(\vec \beta_2,\vec \beta_2)}\vec \beta_2 β 3=α 3(β 1,β 1)(α 3,β 1)β 1(β 2,β 2)(α 3,β 2)β 2

正交矩阵

AA T = A T A = E \textbf {AA}^T = \textbf {A}^T\textbf A = \textbf E AAT=ATA=E

A T = A − 1 \textbf A ^T = \textbf A^{-1} AT=A1

$|\textbf A| =\pm1 $

四 线性方程组

n n n 阶矩阵通解的个数

若方程组 A x = 0 \textbf A x = \textbf 0 Ax=0 有解,则 A \textbf A A n − r n-r nr 个线性无关的解

基础解系的取得

约束变量(非自由变量)的确定:遮住剩余部分,自由变量应能构成一个初等矩阵

注意特殊情况:此发使用的前提是,去掉含有的单位矩阵后得到的新矩阵,行列式不为 0 0 0,特殊情况如下所示

有系数矩阵 [ 2 1 2 0 0 0 0 0 0 ] \begin{bmatrix}2 & 1 & 2 \\0 & 0 & 0 \\0 & 0 & 0\end{bmatrix} 200100200,其中 1 1 1 对应的列是约束变量

不能将 α 2 = ( 1 , 0 , 0 ) \boldsymbol{\alpha_2} = (1,0,0) α2=(1,0,0) 作为 E \bold E E 处理,因为 ∣ 2 2 0 0 ∣ = 0 \begin{vmatrix}2 & 2 \\0 & 0\end{vmatrix} = 0 2020=0

对于 r ( A ) = 1 r(\textbf A) = 1 r(A)=1 的矩阵要注意这一点

非齐次线性方程组

非齐次线性方程组解的个数的判定

对于 A x = b \textbf A x = \textbf b Ax=b,其中 A \textbf A A m × n m \times n m×n 阶的系数矩阵
{ r ( A ) = r ( A , b ) = n   唯 一 解 r ( A ) = r ( A , b ) < n   无 穷 多 解 r ( A ) < r ( A , b )           无 解 \begin{cases}r(\textbf A) = r(\textbf A,\textbf b) = n\ 唯一解\\ \\r(\textbf A) =r(\textbf A,\textbf b)<n\ 无穷多解\\ \\r(\textbf A) < r(\textbf A, \textbf b)\ \ \ \ \ \ \ \ \ 无解 \end{cases} r(A)=r(A,b)=n r(A)=r(A,b)<n r(A)<r(A,b)         

三个平面

非齐次方程组构成的增广矩阵可以用来表示多个平面间的关系(以三个为例)

有三个平面方程
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \begin{cases}a_1x + b_1y + c_1z = d_1\\a_2x + b_2y + c_2z = d_2\\a_3x + b_3y + c_3z = d_3\end{cases} a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
可记作增广矩阵
A ‾ = [ a 1 b 1 c 1 d 1 a 2 b 2 c 2 d 2 a 3 b 3 c 3 d 3 ] \overline{\textbf A} = \left[ \begin{array}{ccc:c} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \\ \end{array} \right] A=a1a2a3b1b2b3c1c2c3d1d2d3
则有

  • 关于 A \textbf A A

    r ( A ) = r r(\textbf A) = r r(A)=r,则有 3 − r 3-r 3r 个平面平行

  • 关于 A ‾ \overline{\textbf A} A

    r ( A ) = r ( A ‾ ) = a r(\textbf A) = r(\overline {\textbf A}) = a r(A)=r(A)=a a a a 个方程有交线

    r ( A ) < r ( A ‾ ) , r ( A ‾ ) = a r(\textbf A) < r(\overline {\textbf A}),r(\overline{\textbf A}) = a r(A)<r(A)r(A)=a a a a 个平面没有公共交线

五 特征值与特征向量

特征值与特征向量

特征值的定义

n n n 阶方阵 A \bf A A 有特征值 λ \lambda λ 、特征向量 α \alpha α,则有 A α = λ α \bf {A \alpha} = \lambda \bf \alpha Aα=λα

求特征值:解特征方程 ∣ λ E − A ∣ = 0 |\lambda \textbf E - \textbf A| = 0 λEA=0

特征值的常用结论
  1. 特征值与矩阵元素

    特征值之和等于主对角元素之和(矩阵的迹)
    ∑ i = 1 n λ i = ∑ i = 1 n a i i \sum\limits_{i = 1}^n\lambda_i = \sum\limits_{i = 1}^n a_{ii} i=1nλi=i=1naii
    进一步有个推论

    A x = 0 \textbf Ax = \textbf 0 Ax=0 有非 0 \textbf 0 0    ⟺    0 \iff 0 0 A \textbf A A 的一个特征值

  2. 特征值与矩阵对应行列式的关系

    特征值之积 = = = 行列式之值
    A = ∏ i = 1 n λ i \textbf A = \prod\limits_{i = 1}^n \lambda_i A=i=1nλi

  3. 特殊的矩阵变换对应的特征值和特征向量

    A \textbf A A k A + E k\bold A + \bold E kA+E A + k E \bold A + k\bold E A+kE A − 1 \bold {A}^{-1} A1 A ∗ \bold A^* A A n \bold A^n An P − 1 A P \bold P^{-1} \bold A \bold P P1AP
    λ \lambda λ k λ + 1 k\lambda +1 kλ+1 λ + k \lambda + k λ+k 1 λ \frac 1\lambda λ1$\frac{\textbf A}{\lambda}$
    α \alpha α α \alpha α α \boldsymbol {\alpha} α α \boldsymbol {\alpha} α α \boldsymbol \alpha α$\boldsymbol \alpha $ P − 1 α \textbf P ^{-1 }\alpha P1α

    可有进一步推论,上述 A \textbf A A 矩阵变换的前四个都能通过同一个矩阵 P \textbf P P 相似对角化

相似矩阵

相似矩阵定义

若存在可逆矩阵 p \bf p p,使得 P − 1 AP = B \textbf {P}^{-1}\textbf A \textbf P = \textbf B P1AP=B

则称 B \textbf B B A \textbf A A 的相似矩阵,记作 A \textbf {A} A ~ B \textbf B B

证明两个矩阵相似
  1. 证明矩阵相似于同一个对角矩阵

    即要证 $ \textbf A \sim \textbf B$,只需要证 A ∼ Λ , B ∼ Λ \textbf A \sim \Lambda,\textbf B \sim \Lambda AΛ,BΛ

  2. 证明 A , B \textbf A,\textbf B A,B 有相同的特征值,且相同特征值对应特征向量相同。

求可逆矩阵 P \textbf P P 的一般步骤

求可逆矩阵 P \bf P P 使得 P − 1 AP = B \textbf P^{-1}\textbf A\textbf P = \textbf B P1AP=B

  1. 求出 n n n 阶矩阵的特征值 λ 1 , λ 2 , … … , λ n \lambda _1,\lambda_2,……,\lambda_n λ1,λ2,,λn
  2. 求出各特征值对应的特征向量(即求解各特征值的基础解系 [ λ i E − A ] \begin{bmatrix}\lambda_i \textbf E - \textbf A\end{bmatrix} [λiEA]
  3. 必定有可逆矩阵 P = ( α 1 , α 2 , … … , α n ) \textbf P = (\alpha_1,\alpha_2,……,\alpha_n) P=(α1,α2,,αn) 使得 P − 1 AP = B \textbf P^{-1}\textbf A\textbf P = \textbf B P1AP=B

实对称矩阵

概念

元素均为实数的矩阵 A \textbf A A,且满足 A = A T \textbf A = \textbf A^T A=AT,则称 A \textbf A A 是一个实对称矩阵

实对称矩阵的性质
  1. 实对称矩阵的相似性:

    实对称矩阵必可用过一个正交矩阵实现相似对角化

  2. 实对称矩阵的特征向量:

    实对称矩阵不同特征值的向量相互正交

    即对于 A α i = λ i α i \textbf A \alpha_i = \lambda_i \alpha_i Aαi=λiαi ∀ i ≠ j \forall i \neq j i=j ,有 α i ⋅ α j = 0 \alpha_i \cdot\alpha_j = 0 αiαj=0

求正交矩阵 P P P 使得 A ∼ Λ \textbf A \sim \Lambda AΛ

P P P:在得到 A \textbf A A 的特征向量 ( α 1 , α 2 , … … , α n ) (\alpha_1,\alpha_2,……,\alpha_n) (α1,α2,,αn) 之后

  • 特征值不同

    不同特征值对应的特征向量必正交

    只需对特征向量单位化

  • 特征值有重根,判断是否正交

    若是,只需单位化

    若否,(施密特)正交化

可以得到正交矩阵
Λ = [ η 1 η 2 … η n ] \Lambda = \begin{bmatrix}\eta_1 & & & \\& \eta_2 & \\ & & … \\ & & & \eta_n\end{bmatrix} Λ=η1η2ηn

六 二次型

二次型的定义

标准型和规范型

标准型:二次型矩阵中仅 a i i ≠ 0 a_{ii} \neq 0 aii=0

规范型:在标准型基础上,对于 a i i a_{ii} aii,要求其系数只能为 − 1.0.1 -1.0.1 1.0.1

二次型矩阵一定是一个实对称矩阵,因此其具有实对称矩阵的所有性质

二次型化为标准型
配方法

f f f 构造为三个完全平方项之和

注意,三个平方项构成的行列式不为 0 0 0,不能直接写标准型

如 $f = (x_1 + x_2 + x_3)^2 + (2x_1 + 2x_2 + 2x_3)^2 + x_3^2 $

不能通过变换 { y 1 = x 1 + x 2 + x 3 y 2 = 2 x 1 + 2 x 2 + 2 x 3 y 3 = x 3 \begin{cases}y_1 = x_1 + x_2 + x_3\\y_2 = 2x_1 + 2x_2 + 2x_3\\y_3 = x_3\end{cases} y1=x1+x2+x3y2=2x1+2x2+2x3y3=x3 化为标准型 f = y 1 2 + y 2 2 + y 3 2 f = y^2_1 + y_2^2 + y^2_3 f=y12+y22+y32

必须拆所有括号依次重新配方

正交变换法

任意给定二次型 f = ∑ i = 1 , j = 1 n a i , j x i y j ( a i j = a j i ) f = \sum\limits_{i =1,j = 1}^na_{i,j}x_iy_j(a_{ij} = a_{ji}) f=i=1,j=1nai,jxiyj(aij=aji),总有正交变换 x = P y x = Py x=Py,使 f f f 化为标准型 f = λ 1 y 1 2 + λ 2 y 2 2 + … + λ n y n 2 f = \lambda_1y_1^2+\lambda _2y^2_2 +…+\lambda _n y^2_n f=λ1y12+λ2y22++λnyn2,其中 λ i \lambda _i λi f f f 对应二次型矩阵 A \textbf A A 的特征值

  1. 将二次型表示为矩阵形式
    f = [ x 1 x 2 … x n ] T A [ x 1 x 2 … x n ] f =\begin{bmatrix}x_1 \\ x_2 \\…\\x_n\end{bmatrix}^T\textbf A\begin{bmatrix}x_1 \\ x_2 \\…\\x_n\end{bmatrix} f=x1x2xnTAx1x2xn

  2. 求特征值 λ i \lambda_i λi

  3. λ i \lambda_i λi 对应的特征向量 ξ i \xi _i ξi

  4. 正交化、单位化 ξ i \xi_i ξi,得 C = ( η 1 , η 2 , … , η n ) \textbf C = (\eta_1,\eta_2,…,\eta_n) C=(η1,η2,,ηn)

    则有 x = C y x =\textbf Cy x=Cy

二次曲面

惯性指数

正平方项个数 p p p 记作正惯性系数

负平方项个数 q q q 记作负惯性系数

二次曲面与二次型的关系

二次型构成的方程可以唯一的表示一个曲面,其中矩阵的特征值即二次曲面的轴

此处用正负惯性系数 p . q p.q p.q 描述

  • 椭球
    x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 p = 3 , q = 0 \frac {x^2}{a^2 }+ \frac{y^2}{b^2} + \frac {z^2}{c^2} = 1\\\\p = 3,q = 0 a2x2+b2y2+c2z2=1p=3,q=0

  • 单页双曲面
    x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 p = 2 , q = 1 \frac {x^2}{a^2 }+ \frac{y^2}{b^2} - \frac {z^2}{c^2} = 1\\\\p = 2,q = 1 a2x2+b2y2c2z2=1p=2,q=1

  • 双叶双曲面

    两个形式,区别在右侧常系数的符号
    x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 p = 1 , q = 2 \frac {x^2}{a^2 }- \frac{y^2}{b^2} - \frac {z^2}{c^2} = 1\\\\p = 1,q = 2 a2x2b2y2c2z2=1p=1,q=2

    x 2 a 2 + y 2 b 2 − z 2 c 2 = − 1 p = 2 , q = 1 \frac {x^2}{a^2 }+ \frac{y^2}{b^2} - \frac {z^2}{c^2} = -1\\\\p = 2,q = 1 a2x2+b2y2c2z2=1p=2,q=1

  • 锥面
    x 2 a 2 + y 2 b 2 − z 2 c 2 = 0 p = 2 , q = 1 \frac {x^2}{a^2 }+ \frac{y^2}{b^2} - \frac {z^2}{c^2} = 0\\\\p = 2,q = 1 a2x2+b2y2c2z2=0p=2,q=1

合同

合同的定义

对于两个 n n n 阶方阵 A , B \textbf A, \textbf B A,B,有 P T AP = B \textbf P^T \textbf A \textbf P = B PTAP=B,则称 A , B \textbf A,\textbf B A,B合同,记作 A ≃ B \textbf A \simeq \textbf B AB

合同的充要条件

对于实对称矩阵 A , B \textbf A,\textbf B A,B
A ≃ B    ⟺    二 次 型   x T Ax   和   二 次 型   x T Bx   有 相 同 的 正 负 惯 性 指 数    ⟺    有 相 同 的 规 范 型 \textbf A \simeq\textbf B \iff 二次型\ \textbf x^T\textbf A \textbf x\ 和\ 二次型\ \textbf x^T\textbf B \textbf x \ 有相同的正负惯性指数\iff 有相同的规范型 AB xTAx   xTBx 

正定

正定的判定

f ( x 1 , x 2 , … … , x n ) = x T Ax f(x_1,x_2,……,x_n) = \textbf x^T\textbf A\textbf x f(x1,x2,,xn)=xTAx 正定

  1. A \textbf A A 的正惯性系数 p = n p = n p=n,即 A \textbf A A 的全部特征值 > 0 >0 >0

  2. A \textbf A A的全部顺序主子式 > 0 >0 >0,即 a 11 > 0 , a_{11} > 0, a11>0, ∣ a 11 a 12 a 21 a 22 ∣ > 0 \begin{vmatrix} a_{11} & a_{12} \\a_{21} & a_{22} \end{vmatrix} > 0 a11a21a12a22>0,……, ∣ A ∣ > 0 |\textbf {A}| > 0 A>0 (顺序主子式全为正)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值