基于sklearn的软硬间隔以及各类核函数的SVM实现

在西瓜数据集 3.0α 上分别用线性核和高斯核训练一个 SVM,并比较其支持向量的差别。
数据集下载地址:
https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/watermelon_3a.csv
任选数据集中的一种分布类型的数据,分别用软、硬间隔SVM和各类核函数训练,并分析他们分类的效果。
数据集下载地址:https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/SVM.zip

此博客为第二问,各类SVM的实现。上一篇博客为https://blog.csdn.net/qq_44459787/article/details/111409314

  1. 数据载入与处理
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2020/12/19 20:48
# @Author  : Ryu
# @Site    : 
# @File    : processing_data.py
# @Software: PyCharm

import numpy as np
from sklearn.model_selection import train_test_split


def npz_read(file_dir):
    npz = np.load(file_dir)
    data = npz['data']
    label_list = npz['label']
    npz.close()

    return data, label_list


def split_train_test(data, label_list):
    xtrain, xtest, ytrain, ytest = train_test_split(data, label_list, test_size=0.3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值