在西瓜数据集 3.0α 上分别用线性核和高斯核训练一个 SVM,并比较其支持向量的差别。
数据集下载地址:
https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/watermelon_3a.csv
任选数据集中的一种分布类型的数据,分别用软、硬间隔SVM和各类核函数训练,并分析他们分类的效果。
数据集下载地址:https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/SVM.zip
此博客为第二问,各类SVM的实现。上一篇博客为https://blog.csdn.net/qq_44459787/article/details/111409314
- 数据载入与处理
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/12/19 20:48
# @Author : Ryu
# @Site :
# @File : processing_data.py
# @Software: PyCharm
import numpy as np
from sklearn.model_selection import train_test_split
def npz_read(file_dir):
npz = np.load(file_dir)
data = npz['data']
label_list = npz['label']
npz.close()
return data, label_list
def split_train_test(data, label_list):
xtrain, xtest, ytrain, ytest = train_test_split(data, label_list, test_size=0.3