机器学习
孑渡
计算所2022新生
展开
-
softmax & argmax & softargmax辨析
softmax输入为向量,输出为值为0-1之间的向量,和为1。在分类任务中作为概率出现在交叉熵损失函数中。import numpy as npdata=np.array([0.1, 0.3, 0.6, 2.1 ,0.55])np.exp(data)/np.sum(np.exp(data)) # softmaxarray([ 0.07795756, 0.09521758, 0.12853029, 0.57603278, 0.12226179])argmax为了原创 2022-02-21 18:43:27 · 5941 阅读 · 0 评论 -
基于sklearn的西瓜数据集的SVR回归实现
以西瓜数据集 3.0α 的"密度"为输入"含糖率"为输出,训练一个 SVR。本博客为基于sklearn的西瓜数据集的SVR回归实现。由于代码量较少故放于一个程序中展示。1. 程序实现#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2020/12/19 18:51# @Author : Ryu# @Site : # @File : data_process.py# @Software: PyCharmim.原创 2020-12-20 00:17:20 · 13498 阅读 · 1 评论 -
基于sklearn的软硬间隔以及各类核函数的SVM实现
在西瓜数据集 3.0α 上分别用线性核和高斯核训练一个 SVM,并比较其支持向量的差别。数据集下载地址:https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/watermelon_3a.csv任选数据集中的一种分布类型的数据,分别用软、硬间隔SVM和各类核函数训练,并分析他们分类的效果。数据集下载地址:https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/.原创 2020-12-19 23:38:15 · 12793 阅读 · 1 评论 -
基于Python的西瓜数据集 3.0α的SVM实现
在西瓜数据集 3.0α 上分别用线性核和高斯核训练一个 SVM,并比较其支持向量的差别。数据集下载地址:https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/watermelon_3a.csv任选数据集中的一种分布类型的数据,分别用软、硬间隔SVM和各类核函数训练,并分析他们分类的效果。数据集下载地址:https://amazecourses.obs.cn-north-4.myhuaweicloud.com/datasets/.原创 2020-12-19 20:28:10 · 20716 阅读 · 8 评论 -
基于Python使用集成学习实现风速预测模型
风速预测The CSV file includes a hourly/daily summary for Szeged, Hungary area, between 2006 and 2016.Data available in the hourly response:timesummaryprecipTypetemperatureapparentTemperaturehumiditywindSpeedwindBearingvisibilityloudCoverpressure.原创 2020-12-13 21:39:37 · 15068 阅读 · 6 评论 -
DecisionTree以及可视化
使用决策树方法对泰坦尼克幸存者进行预测。数据下载链接:https://share.weiyun.com/h93y7TnI数据集为1912年泰坦尼克号沉船事件中一些船员的个人信息以及存活状况。这些历史数据已经非分为训练集和测试集,你可以根据训练集训练出合适的模型并预测测试集中的存活状况。1. 数据处理数据处理def data_pross(train_data): age_pross(train_data) fare_pross(train_data)年龄处理def .原创 2020-12-06 11:48:21 · 11796 阅读 · 1 评论 -
Graphviz安装应用
近期做decision Tree的过程中,老师要求用Graphviz做决策树的可视化,而在Windows平台上该软件安装有一些问题。在下说明:Graphviz的安装过程graphviz本身是一款作图软件,其官网提供了一个graphviz包,我们可以通过Python调用保重的接口,利用代码的方式来生成决策树的图例。因此,我们可以通过下载python包和软件两个部分来共同实现这一功能。Python包的下载这一部分对于大家应该不会是太大的问题。在环境中利用pip或者conda都可以很便捷地下载该.原创 2020-12-02 20:43:46 · 11622 阅读 · 6 评论 -
基于Python的Fisher二分类判别模型实现
1. 完成形式本Fisher二分类判别模型的代码是利用Python独立完成编写的,基本基于上课所讲内容,没有参考网上代码。2. 实现算法思路- 数据集选择与载入初始化电力行业中,比较适合Fisher分类判别模型的数据集为用户画像的分类。然而电力行业由于国家管控的特殊性,导致网络上能够找到的开源的数据集过少,在Dataju平台原先有的十多个能源客户画像数据集在今年下半年也全部由于版权、客户信息保密原则等原因而下架。在搜索了一段时间之后无奈放弃选择现成的开源分类数据集。本代码的数据集采用的是Scikit原创 2020-11-17 23:19:18 · 32259 阅读 · 10 评论 -
机器学习(2)模型评估与选择其一
机器学习(2)模型评估与选择其一模型评估这一块知识较多,将分为几篇博文。经验误差与过拟合原创 2020-07-11 18:01:09 · 12645 阅读 · 0 评论 -
机器学习(1)归纳偏好和NFL
机器学习(1)归纳偏好和NFL这是萌新小白第一次写博客,也是刚刚开始机器学习的系统学习。第一次的博客主要介绍的是归纳偏好和NFL定理。归纳偏好任何一个有效的机器学习算法都必然有其归纳偏好,否则其就会因为假设空间中在训练集上假设的“等效”而感到困惑无法产生确定的学习结果。譬如面对一个有很多西瓜的验证集,对于同样要素(样本特征)的西瓜算法会有时判定为“好瓜”,有时判定为“坏瓜”。这样子的学习结果显然是没有实际作用的。譬如,训练集中的数据点为{(0, 0), (1, 1), (-1, 1)}原创 2020-07-09 23:42:52 · 11744 阅读 · 0 评论