Kruskal算法C++实现

Kruskal算法C++实现

Kruskal算法

Kruskal算法是一种按权值的递增次序选择合适的边构造最小生成树的办法,初始化,生成一个包含图中所有顶点且没有边的森林,从图中的边选取最小代价边加入森林,若成环则舍弃,否则使森林的连通分量减少1,直到生成森林变为生成树,只含一个连通分量和|V| - 1条边
借助优先队列(最小堆)选取最小代价边,每次调整时间复杂度O(lg|E|),选取|V|-1条边,最多考虑|E|条边,故算法时间复杂度为O(|E|lg|E|)

void Graph::kruskal() {
    for (int i = 0; i < vextexNumber - 1; ) {
    	//借助最小堆选取最小代价边
        int rootU = findRoot(edges.top().u);
        int rootV = findRoot(edges.top().v);
        if (rootU != rootV) {//若不在一个连通分量中,则合并
            findSet[rootU] = rootV;//合并连通分量
            weight += edges.top().weight;//累积权值
            i++;//选取n-1条边,当且仅当选取到边才使i自增,直到i == |V| - 1
            //使循环在选取|V|-1条边后退出
        }
        edges.pop();
    }
}

并查集

借助并查集,迅速判断边连接的两个顶点是否在一个连通分量中,若在同一个连通分量中,则舍弃边,因为在同一个连通分量中,即在同根节点的树中,树增加一条边即会形成回路,若不在同一连通分量中,将边加入生成树中,将两个连通分量合并。

int findRoot(int x) {
    return findSet[x] == x ? x : findSet[x] = findRoot(findSet[x]);
}

实现代码

/*
author : eclipse
email  : eclipsecs@qq.com
time   : Mon Jun 08 22:42:13 2020
*/
#include <bits/stdc++.h>
using namespace std;

struct Edge {
    int u;
    int v;
    int weight;
    bool operator < (const Edge& x) const{
        return weight > x.weight;
    }
};

class Graph {
private:
    int weight;
    int vextexNumber;
    vector<int> findSet;
    priority_queue<Edge> edges;
    int findRoot(int x);
public:
    Graph(int vextexNumber, vector<Edge> v);
    void kruskal();
    int minimumWeight();
};

Graph::Graph(int vextexNumber, vector<Edge> v) {
    weight = 0;
    findSet.resize(vextexNumber);
    this->vextexNumber = vextexNumber;
    for (int i = 0; i < v.size(); i++) {
        edges.push(v[i]);
        findSet[i] = i;
    }
}

void Graph::kruskal() {
    for (int i = 0; i < vextexNumber - 1; ) {
        int rootU = findRoot(edges.top().u);
        int rootV = findRoot(edges.top().v);
        if (rootU != rootV) {
            findSet[rootU] = rootV;
            weight += edges.top().weight;
            i++;
        }
        edges.pop();
    }
}

int Graph::minimumWeight() {
    return weight;
}

int Graph::findRoot(int x) {
    return findSet[x] == x ? x : findSet[x] = findRoot(findSet[x]);
}

int main(int argc, char const *argv[]) {
    vector<Edge> edges;
    int vextexNumber, N;
    scanf("%d%d", &vextexNumber, &N);
    for (int i = 0; i < N; i++) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        edges.push_back((Edge){u, v, w});
    }
    Graph *graph = new Graph(vextexNumber, edges);
    graph->kruskal();
    printf("%d", graph->minimumWeight());
    return 0;
}

测试数据

5 7
0 1 4
0 2 5
0 3 1
2 3 6
1 2 3
1 3 2
1 4 10

输出数据

16

鸣谢

《算法竞赛入门经典训练指南》

最后

  • 由于博主水平有限,不免有疏漏之处,欢迎读者随时批评指正,以免造成不必要的误解!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值