Kruskal算法C++实现
Kruskal算法
Kruskal算法是一种按权值的递增次序选择合适的边构造最小生成树的办法,初始化,生成一个包含图中所有顶点且没有边的森林,从图中的边选取最小代价边加入森林,若成环则舍弃,否则使森林的连通分量减少1,直到生成森林变为生成树,只含一个连通分量和|V| - 1条边
借助优先队列(最小堆)选取最小代价边,每次调整时间复杂度O(lg|E|),选取|V|-1条边,最多考虑|E|条边,故算法时间复杂度为O(|E|lg|E|)
void Graph::kruskal() {
for (int i = 0; i < vextexNumber - 1; ) {
//借助最小堆选取最小代价边
int rootU = findRoot(edges.top().u);
int rootV = findRoot(edges.top().v);
if (rootU != rootV) {//若不在一个连通分量中,则合并
findSet[rootU] = rootV;//合并连通分量
weight += edges.top().weight;//累积权值
i++;//选取n-1条边,当且仅当选取到边才使i自增,直到i == |V| - 1
//使循环在选取|V|-1条边后退出
}
edges.pop();
}
}
并查集
借助并查集,迅速判断边连接的两个顶点是否在一个连通分量中,若在同一个连通分量中,则舍弃边,因为在同一个连通分量中,即在同根节点的树中,树增加一条边即会形成回路,若不在同一连通分量中,将边加入生成树中,将两个连通分量合并。
int findRoot(int x) {
return findSet[x] == x ? x : findSet[x] = findRoot(findSet[x]);
}
实现代码
/*
author : eclipse
email : eclipsecs@qq.com
time : Mon Jun 08 22:42:13 2020
*/
#include <bits/stdc++.h>
using namespace std;
struct Edge {
int u;
int v;
int weight;
bool operator < (const Edge& x) const{
return weight > x.weight;
}
};
class Graph {
private:
int weight;
int vextexNumber;
vector<int> findSet;
priority_queue<Edge> edges;
int findRoot(int x);
public:
Graph(int vextexNumber, vector<Edge> v);
void kruskal();
int minimumWeight();
};
Graph::Graph(int vextexNumber, vector<Edge> v) {
weight = 0;
findSet.resize(vextexNumber);
this->vextexNumber = vextexNumber;
for (int i = 0; i < v.size(); i++) {
edges.push(v[i]);
findSet[i] = i;
}
}
void Graph::kruskal() {
for (int i = 0; i < vextexNumber - 1; ) {
int rootU = findRoot(edges.top().u);
int rootV = findRoot(edges.top().v);
if (rootU != rootV) {
findSet[rootU] = rootV;
weight += edges.top().weight;
i++;
}
edges.pop();
}
}
int Graph::minimumWeight() {
return weight;
}
int Graph::findRoot(int x) {
return findSet[x] == x ? x : findSet[x] = findRoot(findSet[x]);
}
int main(int argc, char const *argv[]) {
vector<Edge> edges;
int vextexNumber, N;
scanf("%d%d", &vextexNumber, &N);
for (int i = 0; i < N; i++) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
edges.push_back((Edge){u, v, w});
}
Graph *graph = new Graph(vextexNumber, edges);
graph->kruskal();
printf("%d", graph->minimumWeight());
return 0;
}
测试数据
5 7
0 1 4
0 2 5
0 3 1
2 3 6
1 2 3
1 3 2
1 4 10
输出数据
16
鸣谢
最后
- 由于博主水平有限,不免有疏漏之处,欢迎读者随时批评指正,以免造成不必要的误解!