题目描述
咕咕东的雪梨电脑的操作系统在上个月受到宇宙射线的影响,时不时发生故障,他受不了了,想要写一个高效易用零bug的操作系统 —— 这工程量太大了,所以他定了一个小目标,从实现一个目录管理器开始。前些日子,东东的电脑终于因为过度收到宇宙射线的影响而宕机,无法写代码。他的好友TT正忙着在B站看猫片,另一位好友瑞神正忙着打守望先锋。现在只有你能帮助东东!
初始时,咕咕东的硬盘是空的,命令行的当前目录为根目录 root。
目录管理器可以理解为要维护一棵有根树结构,每个目录的儿子必须保持字典序。
现在咕咕东可以在命令行下执行以下表格中描述的命令:
命令 | 类型 | 实现 | 说明 |
---|---|---|---|
MKDIR s | 操作 | 在当前目录下创建一个子目录 s,s 是一个字符串 | 创建成功输出 “OK”;若当前目录下已有该子目录则输出 “ERR”。 |
RM s | 操作 | 在当前目录下删除子目录 s,s 是一个字符串 | 删除成功输出 “OK”;若当前目录下该子目录不存在则输出 “ERR”。 |
CD s | 操作 | 进入一个子目录 s,s 是一个字符串(执行后,当前目录可能会改变) | 进入成功输出 “OK”;若当前目录下该子目录不存在则输出 “ERR”。特殊的,若 s 等于 “…” 则表示返回上级目录,同理,返回成功输出 “OK”,返回失败(当前目录已是根目录没有上级目录)则输出 “ERR”。 |
SZ | 询问 | 输出当前目录的大小 | 也即输出 1+当前目录的子目录数。 |
LS | 询问 | 输出多行表示当前目录的 “直接子目录” 名 | 若没有子目录,则输出 “EMPTY”;若子目录数属于 [1,10] 则全部输出;若子目录数大于 10,则输出前 5 个,再输出一行 “…”,输出后 5 个。 |
TREE | 询问 | 输出多行表示以当前目录为根的子树的前序遍历结果 | 若没有后代目录,则输出 “EMPTY”;若后代目录数+1(当前目录)属于 [1,10] 则全部输出;若后代目录数+1(当前目录)大于 10,则输出前 5 个,再输出一行 “…”,输出后 5 个。若目录结构如上图,当前目录为 “root” 执行结果如下, |
UNDO | 特殊 | 撤销操作 | 撤销最近一个 “成功执行” 的操作(即MKDIR或RM或CD)的影响,撤销成功输出 “OK” 失败或者没有操作用于撤销则输出 “ERR”。 |
输入
输入文件包含多组测试数据,第一行输入一个整数表示测试数据的组数 T(T <= 20);
每组测试数据的第一行输入一个整数表示该组测试数据的命令总数 Q (Q <= 1e5);
每组测试数据的 2 ~ Q+1 行为具体的操作 (MKDIR、RM 操作总数不超过5000);
面对数据范围你要思考的是他们代表的 “命令” 执行的最大可接受复杂度,只有这样你才能知道你需要设计的是怎样复杂度的系统。
输出
每组测试数据的输出结果间需要输出一行空行。注意大小写敏感。
时空限制
Time limit 6000 ms
Memory limit 1048576 kB
样例输入
1
22
MKDIR dira
CD dirb
CD dira
MKDIR a
MKDIR b
MKDIR c
CD ..
MKDIR dirb
CD dirb
MKDIR x
CD ..
MKDIR dirc
CD dirc
MKDIR y
CD ..
SZ
LS
TREE
RM dira
TREE
UNDO
TREE
样例输出
OK
ERR
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
OK
9
dira
dirb
dirc
root
dira
a
b
c
dirb
x
dirc
y
OK
root
dirb
x
dirc
y
OK
root
dira
a
b
c
dirb
x
dirc
y
解题思路
一个巨型模拟题,要求实现目录管理器的功能。使用自顶向下的思路,先视为已经写好了某一模块,然后再去实现具体细节。
目录管理器是一个树形结构,因此需要定义树的节点结构体,每个结构体都包含有:
- 节点名
- 孩子列表
- 父节点
- 子树大小(对应题目中的子目录大小)
由于题目中描述的操作都是以当前目录为基准的,所以我们在每个节点中直接写上相应操作的函数,由此结构体变为了类。
特殊的,Undo操作不属于某一个节点,是全局的,这一条单独拎出来考虑:
由于撤销的只可能是一个操作,故我们只需要对执行过的操作储存到一个表中,撤销时从后往前找到第一个成功执行过的操作,然后对其进行逆操作即可,表现为原先创建就删除,原先删除就创建,原先进目录就出目录…
也正是由此,我们进行操作的时候不需要直接真正意义上的删除或者什么的,只需要断开指针之间的连接即可,这样,恢复的时候只需要直接连起来就行了(这里需要注意不要弄出空指针和野指针)
各个函数的具体实现见代码,思路不难,代码中对操作都做了注释。
(写代码的时候输入法出了问题,所以注释用的是龙鸣英语)
难点核心在于Tree的打印。
Tree指令的出现次数约为1e5,而我们整棵树的节点最多也不过5e3,因此在目录不变的时候我们并不需要每次都重新遍历一遍,过于消耗时间了。答案是懒更新。
详细见代码:
(危 三百七十多行 危)
#include <iostream>
#include <map>
#include <vector>
#include <string>
#include <stack>
using namespace std;
const string cmdname[7] = { "MKDIR","RM","CD","SZ","LS","TREE","UNDO" };
class Node;
class Command
{
public:
int type;//the type of this command
string arg;//arg for MKDIR,RM and CD
Node* lastOperation;//storage of laseOperation
Command(string s)
{
for (int i = 0; i <= 6; i++)
{
if (cmdname[i] == s)
{
type = i;
if (i <= 2)
cin >> arg;
return;
}
}
}
};
class Node
{
public:
Node(string name, Node* father)
{
this->name = name;
this->father = father;
this->size = 1;
this->isupdating = false;
this->childToShow = new vector<string>;
}
Node* mkdir(string arg);//return the node that inserted
Node* rm(string arg);//return the node that deleted
Node* cd(string arg);//return the dir used to stay
void sz();//return the size of the subtree
void ls();//show the direct children of this node
void tree();//show the subtree of this node
bool addChild(Node* node);//insert node into the list of child
void updatesize(int num);//Update all the father's size
private:
string name;//name of this Node
map<string, Node*>child;//List of child,use the name of the child to find the child node
Node* father;//the father Node of this
int size;//size of the subtree
bool isupdating;//if is updating
vector<string>* childToShow;//the children that need to show
void updateTheTree(int type, int num, vector<string>* childToShow);//update the tree
};
Node* Node::mkdir(string arg)
{
if (child.find(arg) != child.end())//Has existed
{
return NULL;
}
Node* new_node = new Node(arg, this);
child.insert({ arg,new_node });//insert into the list
updatesize(1);//update the size of all the father nodes
return new_node;//return the node created just now
}
Node* Node::rm(string arg)
{
auto tmp = child.find(arg);
if (tmp == child.end())//Hasn't existed
{
return NULL;
}
Node* the_node = tmp->second;//get the node that is going to delete
child.erase(tmp);//delete it
updatesize(-1 * the_node->size);//update the size of all the father nodes
return the_node;//return the node deleted just now
}
Node* Node::cd(string arg)
{
if (arg == "..")
{
return this->father;//return the father node
}
else
{
auto tmp = child.find(arg);
if (tmp == child.end())//Hasn't existed
{
return NULL;
}
return tmp->second;//return the child node
}
}
void Node::ls()
{
int the_size = child.size();
if (!the_size)
{
cout << "EMPTY" << endl;
}
else if (the_size >= 1 && the_size <= 10)
{
for (auto i : child)
{
cout << i.first << endl;
}
}
else
{
auto iterbegin = child.begin();
auto iterend = child.end();
for (int i = 0; i < 5; i++)
{
cout << iterbegin->first << endl;
iterbegin++;
iterend--;
}
cout << "..." << endl;
for (int i = 0; i < 5; i++)
{
cout << iterend->first << endl;
iterend++;
}
}
}
void Node::sz()
{
cout << this->size << endl;
}
bool Node::addChild(Node* node)
{
if (child.find(node->name) != child.end())//Has existed
{
return false;
}
child.insert({ node->name,node });//insert the node
updatesize(node->size);//update the size of all the father nodes
return true;
}
void Node::updatesize(int num)
{
this->isupdating = true;
this->size += num;
if (this->father != NULL)//if this node isn't "root"
{
this->father->updatesize(num);//itrater to update the size of the father node
}
}
void Node::tree()
{
if (this->size == 1)
cout << "EMPTY" << endl;
else if (this->size > 1 && this->size <= 10)
{
if (this->isupdating)//if the node has changed just now
{
childToShow->clear();
updateTheTree(0, 0, childToShow);
this->isupdating = false;
}
for (int i = 0; i < this->size; i++)
{
cout << childToShow->at(i) << endl;
}
}
else
{
if (this->isupdating)
{
childToShow->clear();
updateTheTree(1, 5, childToShow);
updateTheTree(2, 5, childToShow);
this->isupdating = false;
}
for (int i = 0; i < 5; i++)
{
cout << childToShow->at(i) << endl;
}
cout << "..." << endl;
for (int i = 9; i >= 5; i--)
{
cout << childToShow->at(i) << endl;
}
}
}
//type:0-all,1-front,2-back
void Node::updateTheTree(int type, int num, vector<string>* childToShow)
{
if (type == 0)
{
childToShow->push_back(this->name);
for (auto i : child)
{
i.second->updateTheTree(0, 0, childToShow);
}
}
if (type == 1)
{
childToShow->push_back(this->name);
if (--num == 0) return;
int n = child.size();
auto it = child.begin();
while (n--)
{
int sts = it->second->size;
if (sts >= num)
{
it->second->updateTheTree(1, num, childToShow);
return;
}
else
{
it->second->updateTheTree(1, sts, childToShow);
num -= sts;
}
it++;
}
}
if (type == 2)
{
int n = child.size();
auto it = child.end();
while (n--)
{
it--;
int sts = it->second->size;
if (sts >= num)
{
it->second->updateTheTree(2, num, childToShow);
return;
}
else
{
it->second->updateTheTree(2, sts, childToShow);
num -= sts;
}
}
childToShow->push_back(this->name);
}
}
vector<Command*> cmdList;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int t, n;
cin >> t;
string thecmd;
while (t--)
{
Node* now = new Node("root", NULL);//start in root
cmdList.clear();
cin >> n;
while (n--)
{
cin >> thecmd;//the name of the command
Command* cmd = new Command(thecmd);
switch (cmd->type)
{
case 0:case 1:
{
cmd->lastOperation = (cmd->type == 0 ? now->mkdir(cmd->arg) : now->rm(cmd->arg));//Get the returnd value
if (cmd->lastOperation == NULL)//if illegal
{
cout << "ERR" << endl;
}
else
{
cout << "OK" << endl;
cmdList.push_back(cmd);//push cmd into the list of commands
}
break;
}
case 2:
{
Node* temp = now->cd(cmd->arg);//Get the returnd value:target directory
if (temp == NULL)
{
cout << "ERR" << endl;
}
else
{
cout << "OK" << endl;
cmd->lastOperation = now;//store the last Node into cmd
cmdList.push_back(cmd);
now = temp;//change current directory to what save in temp
}
break;
}
case 3:
now->sz();
break;
case 4:
now->ls();
break;
case 5:
now->tree();
break;
case 6:
{
bool success = false;
while (!success && !cmdList.empty())
{
Command* lastcmd = cmdList.back();
cmdList.pop_back();
if (lastcmd->type == 0)//mkdir
{
Node* returnnode = now->rm(lastcmd->arg);
if (returnnode != NULL)
{
success = true;
break;
}
}
else if (lastcmd->type == 1)//rm
{
success = now->addChild(lastcmd->lastOperation);
break;
}
else if (lastcmd->type == 2)//cd
{
now = lastcmd->lastOperation;
success = true;
break;
}
}
if (success) cout << "OK" << endl;
else cout << "ERR" << endl;
}
}
}
}
return 0;
}