李宏毅机器学习课程梳理【三】:分类问题


摘要
文章在介绍分类的操作步骤时,类比Regression的三个步骤,提出对于离散函数的解决办法。并提出结果不佳时,通过减少参数量来优化的方法。

1 分类

1.1 理想的分类步骤

第一步,将要分类的东西数字化,使其可以做函式的输入。
第二步,找到理想的分类函数,下面以一个二值分类为例:
二值分类程式设计
上图中利用 δ \delta δ函数设计Loss function,可以训练,但是因为离散的原因,L(f)不可微分

1.2 现实的分类做法

下面介绍一个新解决办法(前提是class独立):
此方法用到贝叶斯公式【执果索因,即某事件发生,求在此事件发生的条件下,属于完备事件组的某一部分的概率】
对于训练集数据,我们根据数据的标签知道数据是属于class1或是class2,估测prior probability P ( C i ) P(C_i) P(Ci) P ( x ∣ C i ) P(x|C_i) P(xCi),然后假设每一个class的概率分布,最后估测 P ( C i ∣ x ) P(C_i|x) P(Cix)
Generative model
这一整套想法,叫做Generative Model:
由training data估测出红框中的四个值后,就可以计算所有 x x x产生的概率,进而知道概率分布。
P ( x ) = P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P(x)=P(x|C_1)P(C_1) + P(x|C_2)P(C_2) P(x)=P(xC1)P(C1)+P(xC2)P(C2)

下面以二元分类为例:
prior value
由training data先算出 P ( C 1 ) P(C_1) P(C1) P ( C 2 ) P(C_2) P(C2)

那么 P ( x ∣ C 1 ) = ? P(x|C_1)=? P(xC1)=? 【求从水系宝可梦中抽出海龟的概率?】

P ( x ∣ C 1 ) P(x|C_1) P(xC1)第一步:数字化,每一个宝可梦都由特征值构成的向量表示
将training data的79个数据可视化如下图
在这里插入图片描述
P ( x ∣ C 1 ) P(x|C_1) P(xC1)第二步,假设程式是一个高斯分布,现在需要求出具体参数 μ ∗ , Σ ∗ \mu^*, \Sigma^* μ,Σ【为什么考虑高斯分布?根据坐标图,样本点的分布符合高斯分布(等高线画法)】

那么,如何计算出 μ ∗ , Σ ∗ \mu^*, \Sigma^* μ,Σ呢??
方法:Maximum Likelihood(极大似然函数法)

似然函数是一种关于统计模型中的参数的函数
对同一个似然函数,其所代表的模型中,某项参数值具有多种可能,但如果存在一个参数值,使得似然函数值达到最大的话,那么这个值就是该项参数最为“合理”的参数值。

概率和似然性有着明显区别:
概率:已知一些参数,预测接下来在观测上所得到的结果。
似然性:已知某些观测所得到的结果,对有关参数进行猜测。似然性代表某个参数为特定值的可能性。

在已观察到事件A的情况下,参数 p H p_H pH在不同值的似然性为
L ( p H ∣ A ) = P ( A ∣ p H ) L(p_H|A)=P(A|p_H) L(pHA)=P(ApH)
似然函数用来了解当参数 p H p_H pH改变时,似然性怎么变化,用来寻找最大可能性的 p H p_H pH值会是多少

定义 L ( μ , Σ ) L(\mu,\Sigma) L(μ,Σ)如下图
在这里插入图片描述
L ( μ , Σ ) = ∏ f μ , Σ ( x n ) L(\mu,\Sigma)=\prod f_{\mu,\Sigma}(x^n) L(μ,Σ)=fμ,Σ(xn)求微分即可解得 μ ∗ , Σ ∗ \mu^*, \Sigma^* μ,Σ,也就是求出了 P ( x ∣ C 1 ) P(x|C_1) P(xC1)

可以分类了
在这里插入图片描述
将值代入即可,以0.5为界,得到分类结果

2 优化

2.1 二维高斯分布

如果结果不理想,可考虑参数过多导致过拟合。上例中两个class的高斯分布参数 Σ \Sigma Σ可共用一个数值来减少参数
在这里插入图片描述
Σ \Sigma Σ计算加权平均在这里插入图片描述
再机器学习宝可梦的七维向量,可以得到较高正确率

2.2 一维高斯分布

假设 x 1 , x 2 , x 3 . . . x_1,x_2,x_3... x1,x2,x3...产生的概率都是一维高斯分布,那么 Σ \Sigma Σ将变成对角阵,更减少参数量,Model更简单。
本例不适合用一维,一个class对应一个Model,Model不同的feature间的协方差【差异】是有必要的,比如宝可梦的战斗力和防御力应该是正相关的。

Tip:如果每个class的各个feature之间都独立,使用Naive Bayes Classifier

3 总结与展望

首先,分类也可三步走,Model-Goodness-Find the best function(easy!)
其次,介绍优化参数的方法。要清楚选择何种模型是根据数据自己判断【dimension之间的联系决定用一维正态分布、二维正态分布或伯努利分布】。
接下来将会学习Logistic Regression等分类方法,再逐步涉及深度学习神经网络等。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值