Pycharm中的Virtualenv Environment、Conda Environment

版本一

Conda Environment该不该选?

先说结论,该选,而且还是正解。前提是你打算"用Anaconda来管理各种Python环境,同时管理Python下面的各种包"。

选了Conda Environment意味着什么?

意味着你以后如果要装新的包的话,在Pycharm里install一个包就实质上直接装到了Anaconda下。我们知道,Anaconda是可以在envs下来同时装多个不同版本的Python来实现管理的,假如你现在在Anaconda Prompt的命令行用conda create -n environment_name python一=X.x命令创建了一个pythonX.X的新虚拟环境,再通过Pycharm对你的项目使用了这个环境,然后安装新的包后,就只会在你的这个Anaconda-envs的虚拟环境下出现这个包,而对其他的任何环境没有影响。

这种情况下,不论是通过Pycharm安装还是在Anaconda prompt下安装新的包,都是等价的。即在Anaconda prompt下安装后会同步到Pycharm使用该环境的项目里,通过Pycharm安装也会自动把包装到Anaconda对应环境的文件夹下。

何时选Virtualenv Environment?会怎样

Pycharm会自动为你选择的python.exe创建一个虚拟环境。是不是感觉有点熟悉?对的,Anaconda也是附带这个效果的,只不过Anaconda的虚拟环境物理上位于envs文件夹下(base环境除外);

Pycharm创建的虚拟环境,是在你的一个先前或现在的项目下;以后想用Anaconda prompt安装新的包时,不会在Pycharm的项目里同步。同理,在Pycharm里安装的新包,即使我当初解释器选择的就是Anaconda下的python.exe。这正是Virtualenv Environment的意义所在——虚拟一个独立的环境,在此之中进行的任何安装新包、卸载旧包操作与先前无关。当然,如果你直接在如上图所示的D:\PycharmProjects\myFirstPythonProject\venv下导入新的包,那确实会同步到Pycharm里。

与一般只安装了python和Pycharm的相比,多了Anaconda的大量基础包。
其实就用不上Anaconda的虚拟环境了,你现在就已经是在建立虚拟环境了。

版本二

说一下Virtualenv Environment和Conda Environment。网上其实有很多资料了,找了两天,我还是没看明白Virtualenv Environment和Conda Environment的区别到底在哪里。后来觉得也不用太纠结这个问题,先会用,满足学习和工作的需要就行,这才是工具最大的意义。后面在使用中一定会遇到很多坑,自己一点一点总结就可以了。

简单说,Virtualenv Environment使项目拥有独立的Python环境,各项目之间不会因为版本依赖、库依赖受到影响。

选择Conda Enviroment,项目文件夹会在Anaconda下面,独立于系统解释器的版本环境,会继承Anaconda下所有的包。

仅是自己学习的话,选择Virtualenv Environment或者Conda Enviroment都可。

总结

我以前创建项目都是在Virtualenv 下创建解析器,这个时候最好用conda install或者pip去安装包,因为如果用pycharm中的加号全装不会同步到环境中。(个人理解)

### 如何在 PyCharm 中设置 virtualenvConda 环境作为系统解释器 #### 配置 Virtualenv 环境 为了在 PyCharm 中配置 Virtualenv 环境,需遵循如下操作: 1. 打开 PyCharm 并进入项目的设置界面。可以通过 `File` -> `Settings...` (Windows/Linux) 或者 `PyCharm` -> `Preferences...` (macOS),找到 `Project: <project_name>` 下的 `Python Interpreter`。 2. 在 Python Interpreters 页面点击右上角齿轮图标并选择 `Add...` 3. 出现的新窗口中可以选择左侧栏目的 `Virtualenv Environment` 选项。如果要新建一个虚拟环境,则勾选 `New environment`;若是要使用已存在的虚拟环境则应取消此勾选,并指定现有路径[^1]。 4. 对于新创建的环境,在弹出的小对话框内可以自定义虚拟环境的位置以及所基于的基础解释器版本。 5. 完成上述设定后点击 OK 即可在当前项目中应用选定或创建好的 Virtualenv 解释器。 #### 配置 Conda 环境 对于 Conda 环境而言,其配置过程略有不同: 1. 同样先打开 PyCharm 的 `Python Interpreter` 设置页面。 2. 添加新的解释器时选择 `Conda Environment` 而不是 Virtualenv。 3. 如果是新增加的 Conda 环境,请确保已经安装 Anaconda 或 Miniconda。之后同样可以在该界面上选择创建全新的 Conda 环境或是利用现有的 Conda 环境[^2]。 4. 当选择了创建一个新的 Conda 环境时,还可以在此处输入命令来预设一些必要的包,比如可以直接写入 `python=3.8 numpy pandas` 来初始化特定版本的 Python 及常用库。 5. 最终确认无误后保存更改即可让 PyCharm 使用指定的 Conda 环境作为默认解析器。 值得注意的是,一旦设置了这些环境之一为系统的解释器,在后续开发过程中无论是通过 PyCharm 内部工具还是外部终端(如 Anaconda Prompt)来进行依赖项管理都将保持一致性和同步性[^4]。 ```bash # 示例:在Anaconda Prompt下激活某个环境后再启动PyCharm conda activate my_env pycharm.exe ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值