原文链接:https://proceedings.mlr.press/v121/tsai20a.html
介绍了一种名为Efficiently-Layered Network (ELNet) 的卷积神经网络架构,专门用于膝关节损伤的初步MRI诊断和分诊。
研究背景
- 背景介绍: 这篇文章的研究背景是磁共振成像(MRI)作为一种广泛接受的膝关节损伤分析技术,其三维捕捉能力使其成为放射科医生定位膝关节潜在撕裂的理想工具。然而,随着肌肉骨骼(MSK)放射科医生工作量的不断增加,自动化的患者分诊工具变得越来越重要,以减少病理病例的阅读延迟。
- 研究内容: 该问题的研究内容包括提出一种优化的卷积神经网络(CNN)架构ELNet,用于初始膝关节MRI诊断的分诊。与过去的方法不同,ELNet是从头开始训练的,而不是使用迁移学习方法。此外,该模型在训练过程中没有定位信息,但仍能有效地定位膝关节撕裂。
- 文献综述: 该问题的相关工作有:Stajduhar等人提出了一种半自动化的方法,使用支持向量机(SVM)诊断膝关节前交叉韧带(ACL)损伤;Liu等人介绍了一种完全自动化的软骨病变检测系统,通过CNN进行分割和补丁分类;Bien等人提出了一种由三个独立的MRNet组成的架构,通过逻辑回归组合输出。
研究方法
这篇论文提出了Efficiently-Layered Network (ELNet) 架构。具体来说:
- Block模块: ELNet的设计围绕Block模块展开,每个Block由以下序列组成:2D卷积→多切片归一化→ReLU激活。Block模块允许网络中的非线性,并且可以重复使用以确保输入和输出维度相等。
- 多切片归一化: 提出了两种多切片归一化的变体:基于层归一化和基于对比归一化。层归一化对每个切片计算均值和方差,而对比归一化对每个切片和每个通道计算均值和方差。
- BlurPool: BlurPool操作通过首先对输入表示应用抗混叠滤波器(二项滤波器),然后进行步幅池化来缓解现代CNN架构中观察到的移位-方差现象。最终表示是模糊输入表示的池化版本。
实验设计
- 数据集: 使用了MRNet数据集和KneeMRI数据集。MRNet数据集包含1,370例膝关节MRI检查,KneeMRI数据集包含917例膝关节MRI检查。
- 训练: 在MRNet数据集中,针对三种病状训练了三个独立的ELNet模型,分别使用冠状图像和轴向图像进行训练。在KneeMRI数据集中,使用五折交叉验证进行评估。
- 评估: 使用准确率、敏感性、特异性、ROC-AUC和Matthew相关系数(MCC)等指标评估ELNet的性能。
结果与分析
- MRNet数据集: ELNet在MRNet验证集上的表现优于MRNet模型,特别是在Matthew相关系数(MCC)方面表现更好。
- KneeMRI数据集: ELNet在KneeMRI数据集上的五折交叉验证结果显示,其平均AUC为0.913,最高达到0.924,表现出较强的鲁棒性。
- 消融研究: 比较了ELNet在多切片归一化和BlurPool被批量归一化和最大池化替换时的性能,结果表明多切片归一化和BlurPool的组合在性能上优于其他组合。
结论
这篇论文提出了一种优化的卷积神经网络架构ELNet,用于膝关节损伤的初步诊断和分诊。ELNet模型轻量级(< 1MB),易于训练和部署,并且在MRNet数据集和KneeMRI数据集上的表现优于现有的MRNet模型。未来的工作可能包括整合所有三个MRI体积(轴向、冠状和矢状),以及研究在不同扫描仪上获取的MRI数据的适用性。
优点与创新
- 高效的多层网络架构:提出了ELNet,一种为初始膝盖MRI诊断优化的卷积神经网络(CNN)架构。
- 从头开始训练:与过去的方法不同,ELNet是从头开始训练的,而不是使用迁移学习方法。
- 多切片归一化和