【论文泛读】Enhanced LSTM for Natural Language Inference

论文链接:https://arxiv.org/pdf/1609.06038.pdf

Abstract

Reasoning and inference are central to human and artificial intelligence. Modelinginference in human language is very challenging. With the availability of large annotated data (Bowman et al., 2015), it has recently become feasible to train neural network based inference models, which have shown to be very effective. In this paper, we present a new state-of-the-art result, achieving the accuracy of 88.6% on the Stanford Natural Language Inference Dataset. Unlike the previous top models that use very complicated network architectures, we first demonstrate that carefully designing sequential inference models based on chain LSTMs can outperform all previous models. Based on this, we further show that by explicitly considering recursive architectures in both local inference modeling and inference composition, we achieve additional improvement. Particularly, incorporating syntactic parsing information contributes to our best result—it further improves the performance even when added to the already very strong model.

model

在这里插入图片描述

We propose neural network models for natural language inference, which achieve the best results
reported on the SNLI benchmark. The results are
first achieved through our enhanced sequential inference model, which outperformed the previous
models, including those employing more complicated network architectures, suggesting that the
potential of sequential inference models have not
been fully exploited yet. Based on this, we further
show that by explicitly considering recursive architectures in both local inference modeling and
inference composition, we achieve additional improvement. Particularly, incorporating syntactic
parsing information contributes to our best result: it
further improves the performance even when added
to the already very strong model.
Future work interesting to us includes exploring
the usefulness of external resources such as WordNet and contrasting-meaning embedding (Chen
et al., 2015) to help increase the coverage of wordlevel inference relations. Modeling negation more
closely within neural network frameworks (Socher
et al., 2013; Zhu et al., 2014) may help contradiction detection.ZG4ubmV0L3FxXzQ0NTQzNzc0,size_16,color_FFFFFF,t_70)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值