- 博客(4)
- 收藏
- 关注
原创 Transformer模型详解(二),多头自注意力机制(Muti-HeadSelf Attention)
多头顾名思义就是同时通过多个自注意力机制进行特征提取,图不同深度的颜色就代表了多头,h表示了多头的数量,完成多头的计算后,再使用一个线性层,将多组自注意力机制的计算结果进行结合再输出。其中自注意力机制会分别使用QKV,三个线性层对输入数据进行特征变换,并使用scaled dot product attention的计算方法,将特征变化后的QKV进行结合。代入到QKV的计算公式中,计算注意力机制的输出,本质上对QKV3组信息进行选择和融合,得到一个最终的注意力结果。
2024-07-12 23:09:27 432
原创 Transformer模型详解(一),Attention is all you need
Transformer与RNN与CNN是一样的,都可以理解为一种深度学习模型。
2024-07-12 22:41:48 616
原创 (最新版)在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境
最近重新配置环境发现现有的教程太久远了,部分内容i经不适用了,所以在前人的及基础上进行了补充和改正。首先,确保已经安装好,安装过程很简单,傻瓜安装即可。如果你还不是很清楚CUDA,CUDATookit,cuDNN,Pytorch分别在深度学习环境中的定位与关系,推荐看一下这篇文章()另外,如果你还不是特别理解虚拟环境的作用,建议看一下这位大佬的视频OK,开始正文,搞事开始。
2024-06-02 13:30:08 843
原创 ResNET简介与个人理解
一、开发背景残差神经网络(ResNet)是由微软研究院的何恺明、张祥雨、任少卿、孙剑等人提出的, 斩获2015年ImageNet竞赛中分类任务第一名, 目标检测第一名。残差神经网络的主要贡献是发现了,并针对退化现象发明了,极大的消除了深度过大的神经网络训练困难问题。神经网络的“深度”首次突破了100层、最大的神经网络甚至超过了1000层。二、网络结构残差单元(残差块)ResNet团队分别构建了带有“直连边(Shortcut Connection)”的、以及。
2024-04-27 10:59:38 996
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人