matlab克里格插值

前言为履行前期承若,现在公开matlab的克里格插值的代码。原理介绍普通克里格法:假定Z(x)Z(x)Z(x)是满足本征假设的一个随机过程,该随机过程有nnn个观测值z(xi)z(xi)z(xi),要预测未采样点x0处的值,则线性预测值Z∗(x0)Z^{*}(x_0)Z∗(x0​)可以表示如下:Z∗(x0)=sumi=1nλiz(xi)Z^{*}(x_0)=sum_{i=1}^n\lam...
摘要由CSDN通过智能技术生成

前言

为履行前期承诺,现在公开matlab的克里格插值的代码。

原理介绍

普通克里格法:假定 Z ( x ) Z(x) Z(x)是满足本征假设的一个随机过程,该随机过程有 n n n个观测值 z ( x i ) z(xi) z(xi),要预测未采样点x0处的值,则线性预测值 Z ∗ ( x 0 ) Z^{*}(x_0) Z(x0)可以表示如下:
Z ∗ ( x 0 ) = ∑ i = 1 n λ i z ( x i ) Z^{*}(x_0)=\sum_{i=1}^n\lambda_iz(x_i) Z(x0)=i=1nλiz(xi)
Kriging是在使预测无偏并有最小方差的基础上,去确定最优的权重值,满足以下两个条件:
(1)无偏性条件: E [ Z ∗ ( x 0 ) − Z ( x ) ) ] = 0 E[Z^{*}(x_0)-Z(x_))]=0 E[Z(x0)Z(x))]=0
(2)最优条件: v a r [ Z ∗ ( x 0 ) − Z ( x 0 ) ] = m i n var[Z^*(x_0)-Z(x_0)]=min var[Z(x0)Z(x0)]=min
有如下
E [ Z ∗ ( x 0 ) − Z ( x 0 ) ] = E [ ∑ i = 1 n λ i z ( x i ) − Z ( x 0 ) ] = ∑ i = 1 n λ i E [ Z ( x i ) ] − E [ Z ( x 0 ) ] E\left[Z^{*}\left(x_{0}\right)-Z\left(x_{0}\right)\right]=E\left[\sum_{i=1}^{n} \lambda_{i} z\left(x_{i}\right)-Z\left(x_{0}\right)\right]=\sum_{i=1}^{n} \lambda_{i} E\left[Z\left(x_{i}\right)\right]-E\left[Z\left(x_{0}\right)\right] E[Z(x0)Z(x0)]=E[i=1nλiz(xi)Z(x0)]=i=1nλiE[Z(xi)]E[Z(x0)]
根据本征假设 E [ Z ( x i ) ] = E [ Z ( x 0 ) ] = m E[Z(x_i)]=E[Z(x_0)]=m E[Z(xi)]=E[Z(x0)]=m
上式进一步表示:
∑ i = 1 n λ i E [ Z ( x i ) ] − E [ Z ( x 0 ) ] = ∑ i = 1 n λ i m − m = m ( ∑ i = 1 n λ i − 1 ) = 0 \sum_{i=1}^{n} \lambda_{i} E\left[Z\left(x_{i}\right)\right]-E\lef

  • 21
    点赞
  • 70
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
克里插值法是一种空间插值方法,它通过已知离散点上的观测值来推测未知位置上的值。该方法以克里博士的名字命名,由于其简单有效而得到广泛应用。 在Matlab中,我们可以使用kriging函数实现克里插值法。该函数需要输入一组观测点的坐标和对应的观测值,以及希望得到插值结果的位置坐标。假设我们已经有了一组观测点数据,可以使用以下代码进行插值: ```matlab % 假设已有的观测点坐标和值分别存储在 X, Y, Z 变量中 % X、Y为观测点的横纵坐标,Z为观测值 % 要进行插值的位置坐标为 xi, yi % 确定克里插值的参数 model = 'exponential'; nugget = 0; sill = 1; range = 2; % 计算插值结果 zi = kriging([X Y], Z, [xi yi], model, range, sill, nugget); % 输出插值结果 disp(['在位置 (', num2str(xi), ',', num2str(yi), ') 的插值值为:', num2str(zi)]); ``` 在该示例代码中,我们首先定义了克里插值的参数,其中model决定了插值模型(这里我们使用指数模型),nugget是剩余项的方差,sill是半方差函数的平稳值,range是半方差函数的范围。 然后,我们通过调用kriging函数,将观测点的坐标和值,以及插值位置的坐标作为参数传递进去,进行插值计算。最后,我们输出插值结果。 需要注意的是,克里插值法的准确性和效果与观测点的分布和密度有关。对于密集观测点且变化明显的情况,克里插值法通常能够得到较好的插值效果。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值