产生数【初见图论】

题目链接https://www.luogu.org/problem/P1037

题目描述

给出一个整数n(n<10 30)和 k 个变换规则(k≤15)。
规则:
一位数可变换成另一个一位数:
规则的右部不能为零。
例如n=234。有规则(k=2):
2->5
3->6
上面的整数234经过变换后可能产生出的整数为(包括原数):
234
534
264
564
共4 种不同的产生数

问题:

给出一个整数 n 和 k 个规则。

求出:

经过任意次的变换(0次或多次),能产生出多少个不同整数。
仅要求输出个数。

输入输出:略

算法

刚开始想暴力发现行不通,看到题解中说到 floyed 算法,就借机复习了一下。
考虑到可能有 2–>3–>5–>1 这种路径,所以这道题目要借用到 floyed 最短路径算法来求出各个数字之间变换交替的通路。考虑到数据范围的问题,需要使用高精度运算用以处理结果。

源码

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
string str;
int vis[10][10], f[10], num[110], k;
//搜索路径 
inline void floyd() {
	for(int k=0; k<=9; k++) {
		for(int i=0; i<=9; i++) {
			for(int j=0; j<=9; j++) {
				vis[i][j]=vis[i][j] || (vis[i][k] && vis[k][j]);
			}
		}
	}
}
int main() {
	cin>>str>>k;
	while(k--) {
		int x, y; cin>>x>>y;
		vis[x][y]=true;
	} 
	for(int i=0; i<=9; i++) vis[i][i]=true;
	floyd();
	for (int i = 0;i <= 9;i++)
    	for (int j = 0;j <= 9;j++)
      		if(vis[i][j]) f[i]++;  //求出i可以变成多少种数字
	int len=2; 
	//从第一个数开始乘、其他都置为零 
	num[1]=1;
	for(int i=0; i<str.length(); i++) {
		for(int j=1; j<=100; j++) num[j]*=f[str[i]-'0'];
		for(int j=1; j<=100; j++) {
			if(num[j]>=10) {
				//进位 
				num[j+1]+=num[j]/10;
				num[j]%=10; 
			}
		}
		while(num[len]) len++; 
	}
	for (int i = len-1;i >= 1;i--) cout << num[i];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值