题意:
给出一个01字符串。对于一个字串,如果这个字串表示的二进制数等于这个字串的长度,那么这个字串就是一个“Good String”。求给出字符串中有多少个“Good String”。
思路:
一个“Good String" 一定对应一个从左到右的第一个1。那么遍历所有的1,求以这个1为第一个1的字串有多少个“Good String”,就可以得出所有的”Good String“.
如果这个字串的长度不等于字串对应的十进制数,这个串一定不可以成为字串吗?不是。如果前面有0的话,那么只增加长度,不增加代表的十进制数。一个以1开始的子串,它能对应的长度范围就是【它的长度,它的长度+前面0的长度】,如果对应十进制的数在这个范围,这个字串就可以作为答案。要预先处理出每一个位置连续0的个数。
代码:
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
typedef long long ll;
const int maxn=2e5+10;
int t,num[maxn];
char s[maxn];
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%s",s+1);
int len=strlen(s+1);
for(int i=1;i<=len;i++)//预处理连续0
{
if(s[i]=='1') num[i]=0;
else num[i]=num[i-1]+1;
}
ll ans=0,cnt=0;
for(int i=1;i<=len;i++)
{
if(s[i]=='1')
{
cnt=0;
for(int j=i;j<=len;j++)
{
cnt=cnt*2+s[j]-'0';
if(j-i+1<=cnt&&cnt<=j-i+1+num[i-1]) ans++;//范围
else break;
}
}
}
printf("%lld\n",ans);
}
return 0;
}