- 博客(73)
- 收藏
- 关注
原创 Mybatis记单词
在mybatis-config.xml中配置dao映射文件位置,运行即可生成对应main下的java文件夹下的com.atguigu.mbg文件夹及里面的bean类,dao类,以及resources文件夹下的com.atguigu.mbg.dao文件夹及里面的映射文件。否则往下执行,如果还是没有拼到,就拼otherwise里面的语句。需求:如果有if成立,添加一个where的前缀(prefix=“where”),如果前面多一个and,去除前面的and(prefixOverrides=“and”)。
2024-01-14 11:35:30 1048
原创 第一个Mybatis项目
对应employees表在src的main下面的java文件夹下新建com.atguigu.bean文件夹,里面新建一个实体类Employee,对应表的列名新建对应属性。(3)Mybatis可以用简单的XML或注解进行配置和原始映射,将接口和Java对象映射成数据库中的记录。(1)Mybatis对比JDBC而言,sql(单独写在xml的配置文件中)和java编码分开,功能边界清晰,一个专注业务,一个专注数据。Mybatis通过映射文件替代持久层接口的实现类(将sql语句写在配置文件内)。
2023-11-24 11:22:18 244
原创 创建maven的web项目
(1)点击左上角File,选择“Project Structure”,选择“Modules”,找到我们新建的项目名“MavenWeb”,在右边第一个点+号,修改下路径:在项目名与WEB-INF之间加上\src\main\webapp,再点击确定。右上角点击“Add Configuration”,点击+号,找到Tomcat,点击local,点击fix,进到页面要点击+号,点击Arti…点击apply,再点击ok,即可成功创建。点击apply,点击ok。然后一直点击OK即可导入。
2023-11-23 22:44:55 899
原创 第一个Maven项目
下面的Build Tools下面的Maven,修改path,如果想用idea内置的Maven,就找到D:\software\IntelliJ IDEA 2022.1.2\plugins\maven\lib\maven3\conf下的settings.xml文件,像(二)修改三处。1.0,点击确定即可。然后再点击栏目中的“Path”,再点击“编辑”,点击“新建”,输入%MAVEN_HOME%\bin,点击确定。如果想用自己的Maven,就将路径改成:D:\apache-maven-3.5.4。
2023-11-22 09:52:08 183
原创 tomcat+idea--如何在idea上发布项目
右上角点击“Add configuration”,然后点击“+”号,找到Tomcat Server下面的local,点击后在右边Application server右边的configure,找到Tomcat的下载目录(bin的上一层),添加进去即可。1、新建一个项目,左上角File,new,project,新建后就和普通的java项目一样。3、勾选“web application”,点击ok。看到右下角Fix,点进去,然后点击OK就可以了。4、怎么发布到Tomcat中呢?这样就把web项目创建好了。
2023-11-10 16:56:16 1224
原创 JDBC简单流程
1、以mysql驱动器为例,下载好对应的jar包后,在项目对应目录下新建一个lib文件夹,将jar包复制到该文件夹中。4.执行SQL,如果是查询返回结果集,并处理结果集。3.创建Statement。
2023-11-05 17:33:06 146
原创 IDEA之Debug调试
(1)出现.ArrayIndexOutOfBoundsException: 3:即索引越界,索引不能等于3。当然,其实在我们每次逐行执行debug的时候,变量代码的边上就会出现当前该变量的值,可以直观地观察到。“Debugger”是当前变量值的反映,如果想看当前输出什么,选它旁边的Console。查看数组元素值,可以让光标停在数组名上,然后点显示出来的加号。逐行执行、进入到方法体内、强制进入到方法体内、跳出方法。3、尝试一下,设置一个断点,然后选择逐行执行代码。(2)在sort这句代码前面打断点。
2023-08-12 10:30:23 296
原创 cuda安装
(一)下载 cuda下载链接1、查询本机电脑显卡版本;2、查看自己的显卡驱动,发现没有,于是去官网下载3、下载安装时报错显示无法连接到nvidia服务器,于是通过设备管理器中的显示适配器更新nvidia驱动程序3、参考链接,使用如下命令:nvida-smi得到电脑的CUDA(驱动)分别是11.6版本(511.79)4、去这里下载cuda11.6版本.........
2022-06-13 14:56:23 1703
原创 CrossEntropy交叉熵损失函数及softmax函数的理解
参考链接1参考链接2参考链接3(一)什么是Sigmoid函数和softmax函数?1、提到二分类问题容易想到逻辑回归算法,而逻辑回归算法最关键的步骤就是将线性模型输出的实数域映射到[0, 1]表示概率分布的有效实数空间,其中Sigmoid函数和softmax函数刚好具有这样的功能。2、Sigmoid函数当分类结果可以只用一个节点表述时,使用Sigmoid函数:...
2022-04-22 18:52:14 10399 1
原创 Origin绘图快速上手指南
1、创建工程打开origin后,点击菜单栏“文件”,选择“项目另存为”,给项目命名,并存到某个工作路径。2、导入数据然后将excel中的数据(只要数据)选中后复制到Book1中,从第5行开始粘贴。可以在侧面打开“项目管理器”,给表格“Book1”重命名为“曲线数据”。还可以在表格的“长单位”处给每列数据加上标签。3、那么这时可以直接使用Origin的自动绘图功能了。选择A、B、C所有列,然后点击菜单栏的“绘图”,选择一个折线图,双击即可绘图。这样呢就是将两条曲线放到同一张图中了。如果想要自定
2022-04-05 16:10:19 67864 4
原创 深度学习-图像分类篇 P4.1 VGG网络-pytorch
哔哩哔哩视频链接up主附的代码链接(一)VGG网络详解1.1 VGG网络简介1、VGG亮点通过堆叠多个3X3的卷积核可以替代大尺度的卷积核,它们拥有相同的感受野。以此减少所需的参数。1.2 感受野1、感受野的定义在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野。通俗的解释是,输出feature map上的一个单元对应输入层上的区域大小。就是说,假设输入的特征层是9X9X1,经过Conv1后,N=(9-3+0)/2+1=4,输出4X4X1;再经过下采
2022-04-03 21:52:11 2416
原创 深度学习-图像分类篇 P3.1AlexNet网络-pytorch
哔哩哔哩视频链接up主附的代码链接(一)AlexNet网络介绍1.1 简介1、该网络的亮点:(1)使用传统的Sigmoid激活函数求导比较麻烦,而且在较深的网络中容易导致梯度消失现象,而ReLu函数能解决这两个问题。(2)过拟合是指特征维度过多或模型设计过于复杂时训练的拟合函数,它能完美的预测几乎所有训练集,但对新数据的泛化能力差。而该作者提出的Dropout能在网络正向传播过程中随机失活一部分神经元,相当于随机放弃了一部分参数,从而达到过拟合的状态。(3)回顾公式:1.2 网络结构介绍
2022-04-03 17:05:21 2749 1
原创 深度学习-图像分类篇 P2.1 pytorch官方demo
(一)预备知识1、demo代码地址:我们将以这个图片分类代码《Training a Classifier》为例:点进去之后我们看一下代码大概是这样,数据集我们选择的是Cifar 10:2、回顾LeNet网络可以看到LeNet的网络结构主要是:卷积-下采样-卷积-下采样-3个全连接层。而我们使用的cifar10数据集是彩色图片,有RGB三个通道,那么我们的input应该是3X32X32。特别地,在Pytorch中的通道排序是[batch, channel, height, width],其中b
2022-04-01 22:43:45 1579
原创 用draw.io画图怎么把公式写上去
(一)visio画图时写公式需要用公式时使用WPS的公式编辑器:然后直接将公式复制到图上想放的位置就可以了。但是,我没有visio。(二)用draw.io画图时写公式1、draw.io的下载地址:软件下载地址:https://github.com/jgraph/drawio-desktop/releases也可以在线绘图,地址:https://app.diagrams.net/但是,在绘图过程中遇到需要输入数学公式的情况,怎么做参考博客:https://blog.csdn.net/ujsdu
2022-03-31 17:59:09 4539
原创 动力节点 SpringMVC P70-74
哔哩哔哩视频链接(一)1、将ch11的代码复制一份,重命名为ch12 interceptor-permission。删掉原项目中第二个拦截器MyInterceptor2的类文件,同时将springmvc.xml中有关第二个拦截器的声明删除。2、步骤分析(read.txt)...
2022-03-25 11:50:18 673 1
原创 动力节点 SpringMVC P62-69
哔哩哔哩视频链接笔记参考链接(一)拦截器介绍1、拦截器(1)拦截器是springmvc中的一种对象,需要实现HandlerInterceptor接口(2)拦截器和过滤器类似,但功能方向侧重点不同。过滤器是用来过滤请求参数,设置编码字符集等。而拦截器是拦截用户的请求,可以对多个Controller做拦截。(3)拦截器是全局的,可以对多个Controller做拦截。一个项目中可以有0个或多个拦截器,他们在一起拦截用户的请求。拦截器常用在:用户登录处理,权限检查,记录日志。2、拦截器的使用步骤
2022-03-24 22:15:25 771
原创 动力节点 SpringMVC P54-61
哔哩哔哩视频链接笔记链接参考(一)请求转发和重定向(二)项目准备1、复制一份ch02的代码,重命名为ch08 forward-redirect,删掉target文件夹和.iml文件后,更改pom.xml文件中的项目名信息。然后点击Project Structure,点击+,import Modules,选择Maven项目,点击ok,将刚刚这个ch08的项目引入。2、修改index.jsp的内容<%@ page contentType="text/html;charset=UTF-8"
2022-03-24 16:18:48 564
原创 动力节点 SpringMVC P44-53
哔哩哔哩视频链接笔记参考链接(一)SSM简介1、SpringMVC相当于界面层,Spring相当于service层,MyBatis相当于Dao层。2、项目创建(1)点击右上角标识“Project Structure”,选择Modules,点击+号,选择"New Module",选择“Maven”,在“Create from archetype”前勾选,找到“maven-archetype-webapp”,点击next。(2)将项目命名为ch07 ssm,并选择存储路径(记得后面要加\ch07
2022-03-22 20:40:31 694
原创 动力节点 SpringMVC P33-43
哔哩哔哩视频链接笔记参考链接(一)解读中央调度器处理的<url-pattern1、在web.xml中,在没有特殊要求的情况下,springmvc 的中央调度器 DispatcherServlet 的< url-pattern/ >常使用后缀匹配方式,如写为 *.do 或者 *.action , *.mvc 等。tomcat本身能处理静态资源的访问,像html,图片,js文件等都是静态资源。这是因为tomcat的web.xml文件有一个 servlet 名称为 default,在服
2022-03-21 19:54:14 445
原创 动力节点 SpringMVC P21-32
哔哩哔哩参考链接笔记参考链接(一)对象接收参数方式当形参过多时,仍使用逐个接收参数的方式非常繁琐,这里介绍对象接收参数的方式。1、复制一份项目代码,炮制上一期的方法,重命名为ch03 recevieparam2-DuiXiang。先在index.jsp中添加代码: <p>使用java对象接收请求参数</p> <form action="receiveObject.do" method="post"> 姓名:<input ty
2022-03-20 21:15:09 4084
原创 动力节点 SpringMVC P1-11
哔哩哔哩视频链接笔记参考链接(一)SpringMVC知识介绍可以理解为,springMVC就是spring,只不过是专门用于web开发的spring框架。能够使用spring的IOC和AOP,方便整合strtus,MyBatis,Hiberate,JPA等其他框架。(二)第一个注解的SpringMVC程序2.1 创建项目1、打开IDEA,选择“Create a new project”,选择"Empty Project",点击next,再下一步我们选择项目工作路径为“F:\follow D
2022-03-18 22:20:10 506
原创 python pip 安装工具包报错:Could not find a version that satisfies the requirement torch==1.3.0
解决办法参考CSDN链接:参考链接(1)输入cmd以管理员身份运行,然后执行这些命令。(2)判断是否安装成功,可以在管理员身份运行的cmd下输入pip list进行查看。
2022-03-17 18:56:29 1657
原创 Google浏览器安装插件
以安装“沙拉查词”插件为例:(1)先点击Google浏览器右上方三个小点,找到“设置”,将搜索引擎改为Bing。(2)然后就可以使用新建页面了,在新建页面搜索“极简插件”或“扩展迷”搜索“沙拉查词”并下载。下载下来是一个压缩包,解压之后可以找到里面.crx后缀的文件。(3)点击Google浏览器右上方三个小点,找到“更多工具”,找到“扩展程序”。将.crx文件拖到里面,即可安装。如果无效的话,试试这个方法:将.crx后缀改为.zip,然后再解压,点击“加载已解压的扩展程序”,找到这个解压后的文
2022-03-17 16:53:59 4038
原创 ResNext网络结构
参考视频ResNext相当于ResNet的升级结构,只是更新了block结构。(一)普通卷积与组卷积1、假设输入的特征矩阵的channel=4,那么对于每一个卷积核,它的channel要与输入特征矩阵的channel保持一致,也=4;假设输出的特征矩阵的channel=n,那么意味着我们要使用n个卷积核进行处理。设每个卷积核的高度和宽度都是k,输入特征矩阵的channel是Cin,因为输出特征矩阵的channel=n,因此有n个卷积核。每个卷积核需要的参数个数是:k X k X Cin普通卷积所需
2022-03-15 16:23:30 1472
转载 项目中的java文件没有在WEB-INF\classes中生成class文件
https://blog.csdn.net/u011008029/article/details/49303723
2022-01-19 23:46:33 227
原创 pytorch安装
(一)安装Anaconda1、详细步骤这里不多说。anaconda安装时会自带安装相应的python版本。安装完成后,可以运行cmd,使用conda --version查看anaconda的版本;用conda list查看安装的包,这里面也包含了python,可以看到对应的python版本。(二)安装CUDA 10.0注意,CUDA 10.0只能安装在NVIDIA显卡上。1、谷歌搜索“cuda download”进入https://developer.nvidia.com/cuda-downlo
2022-01-04 21:13:45 67195 5
原创 Pycharm基础问题解决
(一)左边项目栏不见了点击左下角最下方的小矩形,选择“project”即可将项目栏调出。(二)配置解释器环境(比如python3.x版本或者anconda环境)1、选择上方菜单栏“文件”–>“设置”–>在弹出的小页面中选择“项目:项目名称”2、然后双击右侧栏中的“Project Interpreter”,在出现的新页面中点击倒三角形即可选择当前想要配置的解释器环境。点击“应用”,再点击“确定”即可。(选择一个环境后那么下面就是它已经下载的包,比如这个anconda环境就已经安装了ten
2022-01-04 19:13:49 1614
原创 若依-后台管理系统安装过程
(一)源码https://gitee.com/y_proJect/RuoYi(二)安装过程1、以zip形式下载后用idea打开,
2021-12-25 18:58:10 1960
原创 10月29日-吴恩达机器学习P107-112
(一)MapReduceMapReduce用于解决大规模数据问题。1、原理概述在批量梯度下降中更新θ的式子表达如下。假定m=400即有400条训练样本,共有4个电脑来处理这些数据,因此,我们将这些样本数据划分成4个子集。第1台电脑处理前100个训练样本,将求和部分记录为tempj(1);第2台电脑处理样本101-200,计算tempj(2)…然后将temp(1)、temp(2)、temp(3)、temp(4)发给中心服务器,由它完成参数θ的更新操作。最终处理式子等同于批量梯度下降的那个式子。
2021-11-03 15:23:12 276
原创 10月28日-吴恩达机器学习P101-106
(一)协同过滤算法预处理之均值规范化1、假设有一个用户Eve没有对任意一部电影进行评价,假设n=2我们要学习两个特征变量,那么第5个用户的参数向量θ(5)也是一个二维向量。然后我们可以看这个优化目标函数,对于第一项,因为r(i,j)都=0(没有给电影打过分),那么这一项为0;那么只有最小化第3项正则化项,那么最终θ(5)可能还是=[0 0],因为没有数据让参数远离0,正则化项会尽量小。那么用户Eve对所有电影评分预测都为0,是无效预测。2、均值归一化(1)表示出矩阵Y后,计算每部电影的平均评分,得
2021-11-02 16:44:05 384
原创 10月27日-吴恩达机器学习P94-100
(一)多变量高斯分布1、给定一些正常的样本点,x1为CPU负载,x2为内存使用,分别服从高斯分布。给定一个预测样本,即这个绿色点,如果只从左边这个图看,这个绿色点是在正常样本的范围之外的,是异常的(因为正常样本点都是CPU负载高,同时内存使用也会很高;但是这个绿色点是内存使用很高,但CPU负载却很低)。但是分别在x1的高斯图、x2的高斯图中它都处于高频次部分,被判定为正常的。这是因为我们的异常检测算法不会意识到这个蓝色大圈才是高频部分。相反地,它认为最中间这部分(最里面那个粉色圈)是最高频,然后以此
2021-11-01 14:19:50 170
原创 10月26日-吴恩达机器学习P88-93
(一)异常检测1、假设你是一个飞机引擎制作商,需要对生产的飞机引擎进行质量监控测试。需要测试引擎的一些特征变量,包括引擎运转时产生的热量x1、引擎的振动x2…等等。这样就有了新的数据集{x(1),x(2),…x(m)},如果绘制在图上就是这些红色叉的点。假设一个新的飞机引擎特征集为Xtest,刚被生产出来,需要检测。由绿点标出。如果这个绿点在红色叉群比较近,可以认为它是正常的;如果比较远,可以认为它是有故障的。2、更正式的定义如果我们有m个正常样本,我们需要知道Xtest是否是正常的?我们需要对x
2021-10-30 15:27:26 474
原创 10月24日-吴恩达机器学习P72-77
(一)理解大间隔分类器的数学原理1、向量内积的知识向量u的范数||u||等于向量u的长度,向量u表示在坐标轴上时其长度可以用这个根式表示。u向量乘以v向量等价于:v在u上的投影长度p乘以||u||,与u1v1+u2v2的结果是一样的。注意,在u与v的夹角大于90度时,p<0,向量内积也小于0。2、SVM决策边界我们先做一点简化,假设θ0=0,也就是忽略截距。假设特征数即n=2,这样我们就有两个特征量x1和x2。那么优化目标可以变成向量θ的范数的平方的1/2的最小化。而下面的θTx>
2021-10-28 16:13:03 397
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人