(一)什么是Sigmoid函数和softmax函数?
提到二分类问题容易想到逻辑回归算法,而逻辑回归算法最关键的步骤就是将线性模型输出的实数域映射到[0, 1]表示概率分布的有效实数空间,其中Sigmoid函数和softmax函数刚好具有这样的功能。
1.1 Sigmoid函数
Sigmoid =多标签分类问题=多个正确答案=非独占输出(例如胸部X光检查、住院)。构建分类器,解决有多个正确答案的问题时,用Sigmoid函数分别处理各个原始输出值。
Sigmoid函数的输出在(0,1)之间,输出范围有限,优化稳定,可以用作输出层。
1.2 Softmax函数
Softmax =多类别分类问题=只有一个正确答案=互斥输出(例如手写数字,鸢尾花)。构建分类器,解决只有唯一正确答案的问题时,用Softmax函数处理各个原始输出值。Softmax函数的分母综合了原始输出值的所有因素,这意味着,Softmax函数得到的不同概率之间相互关联。
Softmax直白来说就是将原来输出是3,1,-3通过Softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标。
由于Softmax函数先拉大了输入向量元素之间的差异(通过指数函数),然后才归一化为一个概率分布,在应用到分类问题时,它使得各个类别的概率差异比较显著,最大值产生的概率更接近1,这样输出分布的形式更接近真实分布。
1.3 对于二分类任务
对于二分类问题来说,理论上,两者是没有任何区别的。由于我们现在用的Pytorch、TensorFlow等框架计算矩阵方式的问题,导致两者在反向传播的过程中还是有区别的。实验结果表明,两者还是存在差异的,对于不同的分类模型,可能Sigmoid函数效果好,也可能是Softmax函数效果。