P1017 进制转换

52 篇文章 1 订阅
27 篇文章 0 订阅
本文介绍了使用C++编程语言进行进制转换的方法,通过代码示例详细展示了如何将数字从一种进制转换到另一种进制。
摘要由CSDN通过智能技术生成
题目描述

我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减111)为指数,以101010为底数的幂之和的形式。例如:123123123可表示为 1×102+2×101+3×1001 \times 10^2+2\times 10^1+3\times 10^01×102+2×101+3×100这样的形式。

与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值−1-1−1)为指数,以222为底数的幂之和的形式。一般说来,任何一个正整数RRR或一个负整数−R-R−R都可以被选来作为一个数制系统的基数。如果是以RRR或−R-R−R为基数,则需要用到的数码为 0,1,....R−10,1,....R-10,1,....R−1。例如,当R=7R=7R=7时,所需用到的数码是0,1,2,3,4,50,1,2,3,4,50,1,2,3,4,5和666,这与其是RRR或−R-R−R无关。如果作为基数的数绝对值超过101010,则为了表示这些数码,通常使用英文字母来表示那些大于999的数码。例如对161616进制数来说,用AAA表示101010,用BBB表示111111,用CCC表示121212,用DDD表示131313,用EEE表示141414,用FFF表示151515。

在负进制数中是用−R-R −R作为基数,例如−15-15−15(十进制)相当于110001110001110001(−2-2−2进制),并且它可以被表示为222的幂级数的和数:

110001=1×(−2)5+1×(−2)4+0×(−2)3+0×(−2)2+0×(−2)1+1×(−2)0110001=1\times (-2)^5+1\times (-2)^4+0\times (-2)^3+0\times (-2)^2+0\times (-2)^1 +1\times (-2)^0110001=1×(−2)5+1×(−2)4+0×(−2)3+0×(−2)2+0×(−2)1+1×(−2)0

设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数:−R∈−2,−3,−4,...,−20-R∈{-2,-3,-4,...,-20}−R∈−2,−3,−4,...,−20
输入格式

输入的每行有两个输入数据。

第一个是十进制数NNN (−32768≤N≤32767-32768 \le N \le 32767−32768≤N≤32767)
第二个是负进制数的基数−R-R−R。
输出格式

结果显示在屏幕上,相对于输入,应输出此负进制数及其基数,若此基数超过101010,则参照161616进制的方式处理。
输入输出样例
输入 #1

30000 -2

输出 #1

30000=11011010101110000(base-2)

输入 #2

-20000 -2

输出 #2

-20000=1111011000100000(base-2)

输入 #3

28800 -16

输出 #3

28800=19180(base-16)

输入 #4

-25000 -16

输出 #4

-25000=7FB8(base-16)

说明/提示

NOIp2000提高组第一题

代码:

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
char z[20]={'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J'}; 
void sb(int n,int m){
    if(n==0)return;
    else{
        if(n>0||n%m==0){
            sb(n/m,m);
            printf("%c",z[n%m]);
            return;
            
        }
        else {
            sb(n/m+1,m);
            printf("%c",z[-m+n%m]); 
            return;
            
        }
    }
}
int main(){
    int n,m;
    cin>>n>>m;
    printf("%d=",n);
    sb(n,m);
    printf("(base%d)",m);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值