题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz
输入输出格式
输入格式:
第一行包含两个整数N、M,表示该图共有N个结点和M条无向边。(N<=5000,M<=200000)
接下来M行每行包含三个整数Xi、Yi、Zi,表示有一条长度为Zi的无向边连接结点Xi、Yi
输出格式:
输出包含一个数,即最小生成树的各边的长度之和;如果该图不连通则输出orz
输入输出样例
输入样例#1: 复制
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
输出样例#1: 复制
7
说明
时空限制:1000ms,128M
数据规模:
对于20%的数据:N<=5,M<=20
对于40%的数据:N<=50,M<=2500
对于70%的数据:N<=500,M<=10000
对于100%的数据:N<=5000,M<=200000
样例解释:
所以最小生成树的总边权为2+2+3=7
思路:
这道题用最小生成树来做,Prim算法我不是很熟悉,所以我来讲讲Kruskal算法。
Kruskal算法也就是并查集做法,算法思路:
将图中的所有边都去掉。
将边按权值从小到大的顺序添加到图中,保证添加的过程中不会形成环
重复上一步直到连接所有顶点,此时就生成了最小生成树。这是一种贪心策略。
这道题就是这样的思路,在注释中也会有所体现。
源代码:
#include<bits/stdc++.h>
using namespace std;
int n,m;
struct node{
int u;
int w;
int v;
}g[200010];
bool cmp(node a,node b){
return a.w<b.w;
}//排序函数
int fa[10010];
void init(){
for(int i=1;i<=n;i++){
fa[i]=i;
}
}//初始化
int get(int x){
if(fa[x]==x){
return x;
}else{
int y=get(fa[x]);
fa[x]=y;
return y;
}
}//找根
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
cin>>g[i].u>>g[i].v>>g[i].w;
}//输入
init();
sort(g+1,g+1+m,cmp);//排序,为后面的贪心思想做准备
int cnt=0;
for(int i=1;i<=m;i++){
int x=get(g[i].u),y=get(g[i].v);
if(x!=y){
cnt+=g[i].w;
fa[x]=y;//因为进行了排序,所以现在找到的就是最小的,加到cnt上就行了
}
}
cout<<cnt;
return 0;
}