数学之数论(快速幂)于2020/7/29

写在前面:
数论是我曾经热爱过,取得过成绩的,也是悲哀过,越不过鸿沟的。
三年前我在数学奥赛夏令营选择放弃,三年后我在ACM赛场再次相遇。
我打算再冲一次。

快速幂

hdu 2817

注意判断是算术序列还是几何序列即可

hdu 1061

n^n的最后一位,有点唬人(才怪)

hdu 5392

求循环长度的最小公倍数!
啥都别说了,牛客第五场多校E题就问你一样不一样!
然而很可悲的,把循环写错了,TLE了整整8次
代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
long long mod=3221225473;
long long fastpos(long long a,long long n)//a^n
{
	long long base=a;
	long long res=1;
	while(n)
	{
		if(n&1) res=(res*base)%mod;
		base=(base*base)%mod;
		n>>=1;
	}
	return res;
}

int a[3000005];
bool leap[3000005];
int c[3000005];
int main()
{
	 int t;
	 scanf("%d",&t);
	 while(t--)
	 {
	 	//memset(a,0,sizeof a);
	 	//memset(leap,0,sizeof leap);
	 	//memset(c,0,sizeof c);
	 	int n;
	 	scanf("%d",&n);
	 	for(int i=1;i<=n;i++)
	 	{
	 		scanf("%d",&a[i]);
	 		leap[i]=0;
	 		c[i]=0;
		}
		long long ans=1;
		for(int i=1;i<=n;i++)
		{			
			if(leap[i]==1)continue;
			long long cnt=1;
			leap[i]=1; 
			int t=a[i];
			while(t!=i)
			{
				leap[t]=1;
				t=a[t];
				cnt++;
			}
			//cout<<cnt<<endl;		
			for(int j=2;j<=cnt;j++)
			{
				int sum=0;
				while(cnt%j==0)
				{
					cnt/=j;
					sum++;
				}
				if(c[j]<sum)c[j]=sum;				
			}
			
			
			
		}
		
			for(int i=2;i<=n;i++)
			{
				if(c[i]!=0)ans=(ans*fastpos(i,c[i]))%mod;
			}
		printf("%lld\n",ans);
	 }
}

hdu 5895

有难度 的 矩阵快速幂
做的时候一直想找f^2(n)的一个递推关系矩阵,当然是想破脑袋也想不出来。当然就算想出来,也会遇到一个问题,那就是g(n)求的是累加啊!累加肯定也要超时,除此之外,这么大的幂如何进行计算也是不会的。
其实难度不是在于找这个递推关系矩阵,矩阵就是正常的递推f(n);难度在于发现g(n)和f(n)的关系,推导如下:
在这里插入图片描述一定一定一定要找三项之间的关系啊!(和高中的数列何其相像啊!)
这样g(n)就能求出来了

这边特别推荐一个高中常用,非常有效的方法:打表
打表找出前几项,再去找规律一点都不丢人。
队友也建议找不出规律时用这个办法。

这条还用到了欧拉函数,注意一下如下定理:
ax % m == ax%euler(m)+euler(m) % m
其次还要用到的任意逆元的公式为:
(a/b) mod c == a mod(b*c) / b
真是麻烦啊…

不过也学到很多,将其作为我的快速幂的结尾吧

#include<bits/stdc++.h>
using namespace std;

//矩阵快速幂 时间复杂度O(n^3log(n)) 
const int maxn = 2;
long long mod = 1;
struct matrix
{
	long long m[maxn][maxn];
	matrix()
	{
		memset(m,0,sizeof m);
	}
};
matrix multi(matrix a,matrix b)
{
	matrix res;
	for(int i=0;i<maxn;i++)
	{
		for(int j=0;j<maxn;j++)
		{
			for(int k=0;k<maxn;k++)
			{
				res.m[i][j]=(res.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
			}
		}
	}
	return res;
}
matrix fastm(matrix a,long long n)
{
	matrix res;
	for(int i=0;i<maxn;i++)
	{
		res.m[i][i]=1;//初始化为单位矩阵,相当于快速幂中的int res=1 
	}
	while(n)
	{
		if(n&1)res=multi(res,a);
		a=multi(a,a);
		n>>=1;
	}
	return res;
}

long long euler(long long a)
{
	long long ans=a;
	for(long long i=2;i*i<=a;i++)
	{
		if(a%i==0)
		{
			ans-=ans/i;
			while(a%i==0)a/=i;
		}
	}
	if(a>1)ans-=ans/a;
	return ans;
}

//快速幂
long long fastpos(long long a,long long n)//a^n
{
	long long base=a;
	long long res=1;
	while(n)
	{
		if(n&1) res=(res*base)%mod;
		base=(base*base)%mod;
		n>>=1;
	}
	return res;
} 

int main()
{
	int t;
	scanf("%d",&t);	
	while(t--)
	{
		matrix a;
		a.m[0][0]=2;
		a.m[0][1]=1;
		a.m[1][0]=1;
		a.m[1][1]=0;
		
		long long n,y,x,s;
		scanf("%lld%lld%lld%lld",&n,&y,&x,&s);		
		s++;
		long long e=euler(s);		
		mod= e*2;
		a=fastm(a,n*y-1);
		long long f_ny=1*a.m[0][0];
		
		a.m[0][0]=2;
		a.m[0][1]=1;
		a.m[1][0]=1;
		a.m[1][1]=0;
		a=fastm(a,n*y);
		long long f_ny1=1*a.m[0][0];
		long long g_ny=(f_ny%mod*f_ny1%mod)%mod/2+e;
		mod=s;
	//	cout<<fastpos(x,g_ny)<<endl;
		printf("%lld\n",fastpos(x,g_ny));
	}

 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值