写在前面:
数论是我曾经热爱过,取得过成绩的,也是悲哀过,越不过鸿沟的。
三年前我在数学奥赛夏令营选择放弃,三年后我在ACM赛场再次相遇。
我打算再冲一次。
快速幂
hdu 2817
注意判断是算术序列还是几何序列即可
hdu 1061
n^n的最后一位,有点唬人(才怪)
hdu 5392
求循环长度的最小公倍数!
啥都别说了,牛客第五场多校E题就问你一样不一样!
然而很可悲的,把循环写错了,TLE了整整8次
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
long long mod=3221225473;
long long fastpos(long long a,long long n)//a^n
{
long long base=a;
long long res=1;
while(n)
{
if(n&1) res=(res*base)%mod;
base=(base*base)%mod;
n>>=1;
}
return res;
}
int a[3000005];
bool leap[3000005];
int c[3000005];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
//memset(a,0,sizeof a);
//memset(leap,0,sizeof leap);
//memset(c,0,sizeof c);
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
leap[i]=0;
c[i]=0;
}
long long ans=1;
for(int i=1;i<=n;i++)
{
if(leap[i]==1)continue;
long long cnt=1;
leap[i]=1;
int t=a[i];
while(t!=i)
{
leap[t]=1;
t=a[t];
cnt++;
}
//cout<<cnt<<endl;
for(int j=2;j<=cnt;j++)
{
int sum=0;
while(cnt%j==0)
{
cnt/=j;
sum++;
}
if(c[j]<sum)c[j]=sum;
}
}
for(int i=2;i<=n;i++)
{
if(c[i]!=0)ans=(ans*fastpos(i,c[i]))%mod;
}
printf("%lld\n",ans);
}
}
hdu 5895
有难度 的 矩阵快速幂
做的时候一直想找f^2(n)的一个递推关系矩阵,当然是想破脑袋也想不出来。当然就算想出来,也会遇到一个问题,那就是g(n)求的是累加啊!累加肯定也要超时,除此之外,这么大的幂如何进行计算也是不会的。
其实难度不是在于找这个递推关系矩阵,矩阵就是正常的递推f(n);难度在于发现g(n)和f(n)的关系,推导如下:
一定一定一定要找三项之间的关系啊!(和高中的数列何其相像啊!)
这样g(n)就能求出来了
这边特别推荐一个高中常用,非常有效的方法:打表!
打表找出前几项,再去找规律一点都不丢人。
队友也建议找不出规律时用这个办法。
这条还用到了欧拉函数,注意一下如下定理:
ax % m == ax%euler(m)+euler(m) % m
其次还要用到的任意逆元的公式为:
(a/b) mod c == a mod(b*c) / b
真是麻烦啊…
不过也学到很多,将其作为我的快速幂的结尾吧
#include<bits/stdc++.h>
using namespace std;
//矩阵快速幂 时间复杂度O(n^3log(n))
const int maxn = 2;
long long mod = 1;
struct matrix
{
long long m[maxn][maxn];
matrix()
{
memset(m,0,sizeof m);
}
};
matrix multi(matrix a,matrix b)
{
matrix res;
for(int i=0;i<maxn;i++)
{
for(int j=0;j<maxn;j++)
{
for(int k=0;k<maxn;k++)
{
res.m[i][j]=(res.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
}
}
return res;
}
matrix fastm(matrix a,long long n)
{
matrix res;
for(int i=0;i<maxn;i++)
{
res.m[i][i]=1;//初始化为单位矩阵,相当于快速幂中的int res=1
}
while(n)
{
if(n&1)res=multi(res,a);
a=multi(a,a);
n>>=1;
}
return res;
}
long long euler(long long a)
{
long long ans=a;
for(long long i=2;i*i<=a;i++)
{
if(a%i==0)
{
ans-=ans/i;
while(a%i==0)a/=i;
}
}
if(a>1)ans-=ans/a;
return ans;
}
//快速幂
long long fastpos(long long a,long long n)//a^n
{
long long base=a;
long long res=1;
while(n)
{
if(n&1) res=(res*base)%mod;
base=(base*base)%mod;
n>>=1;
}
return res;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
matrix a;
a.m[0][0]=2;
a.m[0][1]=1;
a.m[1][0]=1;
a.m[1][1]=0;
long long n,y,x,s;
scanf("%lld%lld%lld%lld",&n,&y,&x,&s);
s++;
long long e=euler(s);
mod= e*2;
a=fastm(a,n*y-1);
long long f_ny=1*a.m[0][0];
a.m[0][0]=2;
a.m[0][1]=1;
a.m[1][0]=1;
a.m[1][1]=0;
a=fastm(a,n*y);
long long f_ny1=1*a.m[0][0];
long long g_ny=(f_ny%mod*f_ny1%mod)%mod/2+e;
mod=s;
// cout<<fastpos(x,g_ny)<<endl;
printf("%lld\n",fastpos(x,g_ny));
}
}