2018测试开发
给定一个数组序列, 需要求选出一个区间, 使得该区间是所有区间中经过如下计算的值最大的一个:
区间中的最小数 * 区间所有数的和最后程序输出经过计算后的最大值即可,不需要输出具体的区间。如给定序列 [6 2 1]则根据上述公式, 可得到所有可以选定各个区间的计算值:
[6] = 6 * 6 = 36;
[2] = 2 * 2 = 4;
[1] = 1 * 1 = 1;
[6,2] = 2 * 8 = 16;
[2,1] = 1 * 3 = 3;
[6, 2, 1] = 1 * 9 = 9;
从上述计算可见选定区间 [6] ,计算值为 36, 则程序输出为 36。
区间内的所有数字都在[0, 100]的范围内;
思路是用前缀和记录区间sum,ST表记录区间最小值,时间复杂度O(n^2)
题解:注意到所有数字的范围很小,最小值的范围很小,对每一个最小值进行枚举,尽可能延伸即可
#include<bits/stdc++.h>
using namespace std;
int a[500005];
int main()
{
ios::sync_with_stdio(false);
int n;cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
long long ans = 0;
for(int j=100;j>=1;j--)
{
long long sum = 0;
for(int i = 1;i<=n;i++)
{
if(a[i]<j)
{
sum = 0;
continue;
}
sum += a[i];
ans = max(ans,sum*j);
}
}
cout<<ans;
}
为了不断优化推荐效果,今日头条每天要存储和处理海量数据。假设有这样一种场景:我们对用户按照它们的注册时间先后来标号,对于一类文章,每个用户都有不同的喜好值,我们会想知道某一段时间内注册的用户(标号相连的一批用户)中,有多少用户对这类文章喜好值为k。因为一些特殊的原因,不会出现一个查询的用户区间完全覆盖另一个查询的用户区间(不存在L1<=L2<=R2<=R1)。
输入描述:
输入: 第1行为n代表用户的个数 第2行为n个整数,第i个代表用户标号为i的用户对某类文章的喜好度 第3行为一个正整数q代表查询的组数 第4行到第(3+q)行,每行包含3个整数l,r,k代表一组查询,即标号为l<=i<=r的用户中对这类文章喜好值为k的用户的个数。 数据范围n <= 300000,q<=300000 k是整型
输出描述:
输出:一共q行,每行一个整数代表喜好值为k的用户的个数
记录下每个k的人物编号,二分查找
一开始在不会出现一个查询的用户区间完全覆盖另一个查询的用户区间困惑了很久
#include<bits/stdc++.h>
using namespace std;
int a[300005];
map<int, vector<int> > ma;
int main()
{
ios::sync_with_stdio(false);
int n;cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
ma[a[i]].push_back(i);
}
int q;cin>>q;
while(q--)
{
int l,r,k;cin>>l>>r>>k;
auto x = lower_bound(ma[k].begin(),ma[k].end(),l);
auto y = upper_bound(ma[k].begin(),ma[k].end(),r);
cout<<y-x<<endl;
}
}