稀疏模型(Sparse Models)——稀疏贝叶斯学习方法详解

稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)方法详解

本文将介绍什么是稀疏贝叶斯学习、它的数学原理、与其他稀疏方法的比较、以及实现与常见问题,最后进行总结。


1. 简介

1.1 稀疏贝叶斯学习的概念

稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)是一类将贝叶斯思想与稀疏约束相结合的模型,旨在自动从高维数据中选择最相关的特征(即令大部分不重要的权重趋于零),从而简化模型并提升可解释性。与常见的基于L1正则化(如Lasso)的稀疏方法相比,SBL还能给出模型参数以及特征重要性的后验分布,从而量化不确定性。

在回归、分类、信号处理等问题中,SBL均有广泛应用。它的核心特点是通过层次化先验(如Automatic Relevance Determination, ARD)来实现特征选择,并且可以在贝叶斯框架下,对特征重要性给出概率解释。


2. 数学原理

以下将以回归问题为例,介绍稀疏贝叶斯学习的主要数学推导。分类任务的原理与之相似,只是似然函数形式有所不同。

2.1 回归模型与贝叶斯框架

我们考虑一个线性回归模型:

y = X w + ϵ , ϵ ∼ N ( 0 , σ 2 I ) , \mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}), y=Xw+ϵ,ϵN(0,σ2I),

其中 X ∈ R N × M \mathbf{X} \in \mathbb{R}^{N \times M} XRN×M 为输入特征矩阵, y ∈ R N \mathbf{y} \in \mathbb{R}^{N} yRN 为输出向量, w ∈ R M \mathbf{w} \in \mathbb{R}^{M} wRM 为模型参数(权重), σ 2 \sigma^2 σ2 为噪声方差。在贝叶斯统计的框架下,参数 w \mathbf{w} w被视为随机变量,我们要关心的是其后验分布 p ( w ∣ X , y ) p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) p(wX,y),而贝叶斯定理告诉我们:

p ( w ∣ X , y ) = p ( y ∣ X , w )   p ( w ) p ( y ∣ X ) . p(\mathbf{w} \mid \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) \, p(\mathbf{w})}{p(\mathbf{y} \mid \mathbf{X})}. p(wX,y)=p(yX)p(yX,w)p(w).

其中,

  • p ( y ∣ X , w ) p(\mathbf{y} \mid \mathbf{X}, \mathbf{w}) p(yX,w) 为似然函数,即 N ( X w , σ 2 I ) \mathcal{N}(\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}) N(Xw,σ2I)
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值