波的分析方法——奇异谱分析(SSA)方法详解

波的分析方法——奇异谱分析(SSA)方法详解

奇异谱分析(Singular Spectrum Analysis, SSA)是一种数据驱动的时间序列分析与分解技术,在信号处理、经济学、气象学等领域有着广泛应用。相比于依赖特定基函数展开的傅里叶分析或小波分析,SSA直接从数据本身出发,通过构造“嵌入矩阵”并对其进行奇异值分解(SVD),将原始序列分解为若干具有不同时间尺度的分量(通常称为“重构分量”或“RC们”),并能同时提取趋势和周期等结构性信息。


一、SSA的基本思路

设有长度为 N N N 的时间序列
X = { x 1 , x 2 , … , x N } . X = \{x_1, x_2, \dots, x_N\}. X={ x1,x2,,xN}.
SSA首先通过一个窗口长度 L L L(常取 2 ≤ L ≤ N / 2 2 \le L \le N/2 2LN/2)在该序列上进行滑动,将一维序列“嵌入”到一个二维矩阵中,然后用奇异值分解对该“嵌入矩阵”进行分解,从而得到若干秩一矩阵,最后再通过对这些秩一矩阵进行“对角线(或反对角线)平均”(diagonal averaging)或某种简化的均值操作,就可以把原始序列分离成多个分量以及一个可能的剩余或趋势项。

与“经验模态分解(EMD)”等方法不同,SSA不依赖寻找局部极值点,也不要求信号满足严格的局部对称性或包络条件;它通过线性代数方法实现分解,能够从数据中自动学习各个不同尺度或不同频率的成分。


二、数学基础:从嵌入到分解与重构

1. 构造嵌入矩阵

给定序列 X = { x 1 , x 2 , … , x N } X = \{x_1, x_2, \dots, x_N\} X={ x1,x2,,xN} 和窗口长度 L L L,我们令 K = N − L + 1 K = N - L + 1 K=NL+1。将序列“嵌入”到一个 L × K L \times K L×K 的轨迹矩阵 X \mathbf{X} X 中:

X = [ x 1 x 2 ⋯ x K x 2 x 3 ⋯ x K + 1 ⋮ ⋮ ⋱ ⋮ x L x L + 1 ⋯ x N ] . \mathbf{X} = \begin{bmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_N \end{bmatrix}. X= x1x2xL</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值