排列熵(Permutation Entropy)详解
排列熵(Permutation Entropy,简称 PE)是一种用来衡量信号复杂度和随机性的方法。与传统的熵定义不同,排列熵不依赖于信号的数值大小,而是关心信号数值的排序关系。它主要应用于时间序列的分析中,能够反映信号的复杂性、随机性以及规律性,尤其在混沌系统和非线性动力学的研究中被广泛使用。
目录
什么是排列熵?
排列熵(Permutation Entropy, PE)是一种基于时间序列中各点值的排列模式的熵度量方法。它通过观察时间序列中数值的排序,而不是数值本身来度量信号的复杂度。排列熵是衡量信号序列中信息随机性的一种方式,能够反映信号的动态行为特性。
直观理解
排列熵并不直接依赖于数据点的数值,而是依赖于数据点的排序情况。例如,对于一个长度为 m m m 的时间窗口,排列熵度量的是每个窗口内数值的相对顺序。
- 如果信号的排列模式很有序,比如在一个窗口内数据总是按升序排列,那么排列熵就会较小。
- 如果信号的排列模式非常混乱和随机,那么排列熵就会较大。
排列熵的核心思想是:通过分析数值的排序关系来计算系统的复杂性,而不需要关心具体的数值大小。
排列熵的数学原理
排列熵的核心原理是计算时间序列中不同排列模式的概率分布,并基于这些概率分布计算信息熵。数学公式可以分为以下几个步骤:
步骤 1:选择嵌入维度 m m m 和延迟时间 τ \tau τ
- 嵌入维度( m m m):指的是每个窗口中包含多少个数据点。较小的 m m m 适合于分析短期的动态,较大的 m m m 则适合分析长期的依赖关系。
- 延迟时间( τ \tau τ):控制在时间序列中相邻数据点之间的时间距离。延迟时间一般取 1 或根据具体信号的特性选择。
步骤 2:构建时间序列的嵌入空间
给定时间序列 x = { x 1 , x 2 , x 3 , … , x N } x = \{x_1, x_2, x_3, \dots, x_N\} x={
x1,x2,x3,…,xN},我们将时间序列转换为多个窗口(也称为嵌入向量)。每个窗口的长度为 m m m,并且窗口内的数据点通过延迟 τ \tau τ 来提取。对于给定的时间点 t t t,我们可以得到如下的嵌入向量:
X ( t ) = { x t