曲波变换(Curvelet Transform)的原理

曲波变换(Curvelet Transform)的原理

曲波变换作为一种先进的多尺度几何分析工具。本文将探讨曲波变换的数学原理,揭示其内在的几何意义和分析能力。

数学基础

连续曲波变换的严格定义

连续曲波变换可通过如下方式定义。考虑尺度参数 a > 0 a > 0 a>0,方向参数 θ ∈ [ 0 , 2 π ) \theta \in [0, 2\pi) θ[0,2π),以及平移参数 b ∈ R 2 b \in \mathbb{R}^2 bR2,定义一族曲波函数:

φ a , b , θ ( x ) = a − 3 / 4 φ ( D a − 1 R θ − 1 ( x − b ) ) \varphi_{a,b,\theta}(x) = a^{-3/4} \varphi\left(D_a^{-1}R_\theta^{-1}(x-b)\right) φa,b,θ(x)=a3/4φ(Da1Rθ1(xb))

其中 D a D_a Da 是抛物线缩放矩阵,定义为:

D a = ( a 0 0 a ) D_a = \begin{pmatrix} a & 0 \\ 0 & \sqrt{a} \end{pmatrix} Da=(a00a )

R θ R_\theta Rθ 是旋转矩阵:

R θ = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) R_\theta = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} Rθ=(cosθsinθsinθcosθ)

母曲波函数 φ ( x ) \varphi(x) φ(x) 在频域中定义为:

φ ^ ( ω ) = φ ^ ( ω 1 , ω 2 ) = 2 − 3 / 4 W ( 2 − 1 ω 1 ) V ( ω 2 ω 1 ) \hat{\varphi}(\omega) = \hat{\varphi}(\omega_1, \omega_2) = 2^{-3/4}W(2^{-1}\omega_1)V\left(\frac{\omega_2}{\omega_1}\right) φ^(ω)=φ^(ω1,ω2)=23/4W(21ω1)V(ω1ω2)

其中 W W W 是径向窗口函数, V V V 是角度窗口函数,满足:

∑ j = − ∞ ∞ ∣ W ( 2 − j r ) ∣ 2 = 1 , r > 0 \sum_{j=-\infty}^{\infty} |W(2^{-j}r)|^2 = 1, \quad r > 0 j=W(2jr)2=1,r>0

∑ l = − ∞ ∞ ∣ V ( t − l ) ∣ 2 = 1 , t ∈ R \sum_{l=-\infty}^{\infty} |V(t - l)|^2 = 1, \quad t \in \mathbb{R} l=V(tl)2=1,tR

尺度-频率关系的精确表达

在频域中,曲波的支撑满足抛物线缩放关系:

width ≈ length 2 \text{width} \approx \text{length}^2 widthlength2

具体而言,在尺度 j j j 处,有:

支撑长度 ≈ 2 − j \text{支撑长度} \approx 2^{-j} 支撑长度2j
支撑宽度 ≈ 2 − j / 2 \text{支撑宽度} \approx 2^{-j/2} 支撑宽度2j/2

这种非均匀的各向异性缩放是曲波变换区别于小波变换的核心特征。

框架理论和紧框架性质

曲波系统构成 L 2 ( R 2 ) L^2(\mathbb{R}^2) L2(R2) 空间中的紧框架,满足:

A ∥ f ∥ 2 ≤ ∑ j , l , k ∣ ⟨ f , φ j , l , k ⟩ ∣ 2 ≤ B ∥ f ∥ 2 A\|f\|^2 \leq \sum_{j,l,k} |\langle f, \varphi_{j,l,k} \rangle|^2 \leq B\|f\|^2 Af2j,l,kf,φj,l,k2Bf2

其中框架界 A A A B B B 满足 A = B = 1 A = B = 1 A=B=1。这意味着任何平方可积函数 f ∈ L 2 ( R 2 ) f \in L^2(\mathbb{R}^2) fL2(R2) 都可以表示为:

f = ∑ j , l , k ⟨ f , φ j , l , k ⟩ φ j , l , k f = \sum_{j,l,k} \langle f, \varphi_{j,l,k} \rangle \varphi_{j,l,k} f=j,l,kf,φj,l,kφj,l,k

第二代曲波变换的严格数学表述

第二代曲波变换在频域中定义,针对角度 ℓ \ell 和尺度 j j j,定义频域窗口:

Ψ j , ℓ ( r , θ ) = 2 − 3 j / 4 W j ( r ) ⋅ V j ( 2 ⌊ j / 2 ⌋ θ − ℓ ⋅ π ⋅ 2 − ⌊ j / 2 ⌋ ) \Psi_{j,\ell}(r, \theta) = 2^{-3j/4} W_j(r) \cdot V_j\left(2^{\lfloor j/2 \rfloor}\theta - \ell \cdot \pi \cdot 2^{-\lfloor j/2 \rfloor}\right) Ψj,(r,θ)=23j/4Wj(r)Vj(2j/2θπ2j/2)

其中:

  • W j ( r ) W_j(r) Wj(r) 是径向窗口,在区间 [ 2 j , 2 j + 1 ] [2^j, 2^{j+1}] [2j,2j+1] 上非零
  • V j ( θ ) V_j(\theta) Vj(θ) 是角度窗口,覆盖扇形区域 [ − π ⋅ 2 − ⌊ j / 2 ⌋ , π ⋅ 2 − ⌊ j / 2 ⌋ ] [-\pi \cdot 2^{-\lfloor j/2 \rfloor}, \pi \cdot 2^{-\lfloor j/2 \rfloor}] [π2j/2,π2j/2]

在每个尺度 j ≥ 1 j \geq 1 j1,有 2 ⌊ j / 2 ⌋ + 2 2^{\lfloor j/2 \rfloor + 2} 2j/2+2 个不同的角度分区。

数学理论

非线性逼近的最优性定理

对于边界正则性为 C 2 C^2 C2 的二维分段光滑函数 f f f,使用其最大的 m m m 个曲波系数 c m c_m cm 重建的信号 f m f_m fm 满足:

∥ f − f m ∥ 2 2 ≤ C ⋅ m − 2 ⋅ ( log ⁡ m ) 3 \|f - f_m\|_2^2 \leq C \cdot m^{-2} \cdot (\log m)^3 ffm22Cm2(logm)3

这个收敛速率接近于理论上可能的最优收敛速率 O ( m − 2 ) O(m^{-2}) O(m2),远优于小波变换的 O ( m − 1 ) O(m^{-1}) O(m1) 和傅里叶变换的 O ( m − 1 / 2 ) O(m^{-1/2}) O(m1/2)

微局部分析与奇异性检测

曲波变换系数的衰减速率与信号中奇异性的几何和规则性密切相关。对于点 x 0 x_0 x0 处有曲线奇异性的函数 f f f,其曲波系数满足:

∣ ⟨ f , φ a , b , θ ⟩ ∣ ≤ C ⋅ a 2 + β ⋅ ( 1 + ∣ b − x 0 ∣ a ) − N ⋅ ( 1 + a − 1 / 2 ∣ θ − θ 0 ∣ ) − N |\langle f, \varphi_{a,b,\theta} \rangle| \leq C \cdot a^{2+\beta} \cdot (1 + \frac{|b - x_0|}{a})^{-N} \cdot (1 + a^{-1/2}|\theta - \theta_0|)^{-N} f,φa,b,θCa2+β(1+abx0)N(1+a1/2θθ0)N

当且仅当曲波的方向 θ \theta θ 与奇异性的切线方向 θ 0 \theta_0 θ0 一致,且曲波中心 b b b 接近奇异点 x 0 x_0 x0 时。这里 β \beta β 是奇异性的正则性指数, N N N 是任意大的常数。

Besov空间表征

曲波变换可以刻画特定的函数空间。定义序列空间:

B p , q s = { c = { c j , l , k } : ( ∑ j = 0 ∞ ( ∑ l = 0 2 j − 1 ∑ k ∈ Z 2 ∣ c j , l , k ∣ p ) q / p 2 j s q ) 1 / q < ∞ } \mathcal{B}^s_{p,q} = \left\{c = \{c_{j,l,k}\}: \left(\sum_{j=0}^{\infty}\left(\sum_{l=0}^{2^j-1}\sum_{k \in \mathbb{Z}^2} |c_{j,l,k}|^p \right)^{q/p} 2^{jsq}\right)^{1/q} < \infty \right\} Bp,qs= c={cj,l,k}: j=0 l=02j1kZ2cj,l,kp q/p2jsq 1/q<

则有等价范数:

∥ f ∥ B p , q s ≍ ∥ { c j , l , k } ∥ B p , q s \|f\|_{B^s_{p,q}} \asymp \|\{c_{j,l,k}\}\|_{\mathcal{B}^s_{p,q}} fBp,qs{cj,l,k}Bp,qs

其中 c j , l , k = ⟨ f , φ j , l , k ⟩ c_{j,l,k} = \langle f, \varphi_{j,l,k} \rangle cj,l,k=f,φj,l,k 是曲波系数。

离散曲波变换的精确算法

基于USFFT的实现

基于非均匀快速傅里叶变换(USFFT)的离散曲波变换算法可表述为:

  1. 计算信号的二维FFT: f ^ [ n 1 , n 2 ] = F ( f [ t 1 , t 2 ] ) \hat{f}[n_1, n_2] = \mathcal{F}(f[t_1, t_2]) f^[n1,n2]=F(f[t1,t2])

  2. 对每个尺度 j j j 和方向 l l l,提取频域中的子带:
    f ^ j [ n 1 , n 2 ] = f ^ [ n 1 , n 2 ] ⋅ W j [ n 1 , n 2 ] \hat{f}_j[n_1, n_2] = \hat{f}[n_1, n_2] \cdot W_j[n_1, n_2] f^j[n1,n2]=f^[n1,n2]Wj[n1,n2]

  3. 通过USFFT重采样到极坐标网格:
    F ^ j [ r , θ ] = USFFT ( f ^ j [ n 1 , n 2 ] ) \hat{F}_j[r, \theta] = \text{USFFT}(\hat{f}_j[n_1, n_2]) F^j[r,θ]=USFFT(f^j[n1,n2])

  4. 应用角度窗口:
    F ^ j , l [ r , θ ] = F ^ j [ r , θ ] ⋅ V j , l [ θ ] \hat{F}_{j,l}[r, \theta] = \hat{F}_j[r, \theta] \cdot V_{j,l}[\theta] F^j,l[r,θ]=F^j[r,θ]Vj,l[θ]

  5. 对每个子带进行逆FFT得到曲波系数:
    c j , l , k = F − 1 ( F ^ j , l [ r , θ ] ) c_{j,l,k} = \mathcal{F}^{-1}(\hat{F}_{j,l}[r, \theta]) cj,l,k=F1(F^j,l[r,θ])

基于包裹的实现

基于包裹的快速离散曲波变换算法的精确步骤如下:

  1. 计算信号的二维FFT: f ^ [ n 1 , n 2 ] \hat{f}[n_1, n_2] f^[n1,n2]

  2. 对每个尺度 j j j 和方向 l l l,构造频域窗口:
    U j , l [ n 1 , n 2 ] = W j ( n 1 2 + n 2 2 ) ⋅ V j , l ( arctan ⁡ ( n 2 n 1 ) ) U_{j,l}[n_1, n_2] = W_j\left(\sqrt{n_1^2 + n_2^2}\right) \cdot V_{j,l}\left(\arctan\left(\frac{n_2}{n_1}\right)\right) Uj,l[n1,n2]=Wj(n12+n22 )Vj,l(arctan(n1n2))

  3. 将频域子带乘以窗口函数:
    f ^ j , l [ n 1 , n 2 ] = f ^ [ n 1 , n 2 ] ⋅ U j , l [ n 1 , n 2 ] \hat{f}_{j,l}[n_1, n_2] = \hat{f}[n_1, n_2] \cdot U_{j,l}[n_1, n_2] f^j,l[n1,n2]=f^[n1,n2]Uj,l[n1,n2]

  4. 进行包裹操作,将楔形区域映射到矩形区域:
    f ^ j , l W [ n 1 , n 2 ] = W ( f ^ j , l [ n 1 , n 2 ] ) \hat{f}_{j,l}^W[n_1, n_2] = \mathcal{W}(\hat{f}_{j,l}[n_1, n_2]) f^j,lW[n1,n2]=W(f^j,l[n1,n2])

  5. 对包裹后的数据进行逆FFT得到曲波系数:
    c j , l , k = F − 1 ( f ^ j , l W [ n 1 , n 2 ] ) c_{j,l,k} = \mathcal{F}^{-1}(\hat{f}_{j,l}^W[n_1, n_2]) cj,l,k=F1(f^j,lW[n1,n2])

包裹操作 W \mathcal{W} W 可表示为:

f ^ j , l W [ n 1 , n 2 ] = ∑ m 1 , m 2 f ^ j , l [ n 1 + m 1 L j , l , 1 , n 2 + m 2 L j , l , 2 ] \hat{f}_{j,l}^W[n_1, n_2] = \sum_{m_1, m_2} \hat{f}_{j,l}[n_1 + m_1 L_{j,l,1}, n_2 + m_2 L_{j,l,2}] f^j,lW[n1,n2]=m1,m2f^j,l[n1+m1Lj,l,1,n2+m2Lj,l,2]

其中 L j , l , 1 × L j , l , 2 L_{j,l,1} \times L_{j,l,2} Lj,l,1×Lj,l,2 是包裹后的矩形区域大小。

高阶分析性质

不确定性原理与时频局部化

曲波函数 φ a , b , θ \varphi_{a,b,\theta} φa,b,θ 满足以下不确定性关系:

Δ x ⋅ Δ ξ ≥ C ⋅ a − 1 / 2 \Delta_x \cdot \Delta_{\xi} \geq C \cdot a^{-1/2} ΔxΔξCa1/2

其中 Δ x \Delta_x Δx 是曲波在空间域的有效支撑宽度, Δ ξ \Delta_{\xi} Δξ 是在频域的有效支撑宽度。这表明曲波在尺度减小时能达到更好的联合时频局部化。

从二维到高维空间的推广

对于 d d d 维空间中的曲波,其缩放矩阵变为:

D a ( d ) = ( a 0 ⋯ 0 0 a 1 / 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a 1 / 2 ) D_a^{(d)} = \begin{pmatrix} a & 0 & \cdots & 0 \\ 0 & a^{1/2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a^{1/2} \end{pmatrix} Da(d)= a000a1/2000a1/2

相应地, d d d 维曲波在频域中的支撑满足:

width 1 ≈ length 2 , width 2 ≈ length 2 , … , width d − 1 ≈ length 2 \text{width}_1 \approx \text{length}^2, \text{width}_2 \approx \text{length}^2, \ldots, \text{width}_{d-1} \approx \text{length}^2 width1length2,width2length2,,widthd1length2

理论的深层连接

与偏微分方程的关系

曲波变换在解决偏微分方程时表现出色,特别是波动方程:

∂ 2 u ∂ t 2 − c 2 Δ u = 0 \frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 t22uc2Δu=0

在曲波域中,波动算子 ∂ 2 ∂ t 2 − c 2 Δ \frac{\partial^2}{\partial t^2} - c^2 \Delta t22c2Δ 具有稀疏表示。对于初值问题,解的曲波系数满足:

c j , l , k ( t ) = c j , l , k ( 0 ) cos ⁡ ( c ∣ ω j , l ∣ t ) + c ˙ j , l , k ( 0 ) c ∣ ω j , l ∣ sin ⁡ ( c ∣ ω j , l ∣ t ) c_{j,l,k}(t) = c_{j,l,k}(0) \cos(c|\omega_{j,l}|t) + \frac{\dot{c}_{j,l,k}(0)}{c|\omega_{j,l}|}\sin(c|\omega_{j,l}|t) cj,l,k(t)=cj,l,k(0)cos(cωj,lt)+cωj,lc˙j,l,k(0)sin(cωj,lt)

其中 ω j , l \omega_{j,l} ωj,l 是对应曲波的中心频率。

与随机过程理论的联系

对于具有分段光滑边界的随机场 X ( t ) X(t) X(t),其协方差函数在曲波域中具有接近对角的表示:

E [ c j , l , k c j ′ , l ′ , k ′ ] ≈ σ j 2 δ j , j ′ δ l , l ′ δ k , k ′ \mathbb{E}[c_{j,l,k}c_{j',l',k'}] \approx \sigma_j^2 \delta_{j,j'}\delta_{l,l'}\delta_{k,k'} E[cj,l,kcj,l,k]σj2δj,jδl,lδk,k

这表明曲波变换能有效地将具有规则几何结构的随机过程分解为近似不相关的组件。

统一视角下的数学公式

将上述所有理论整合,可以得到曲波变换的统一数学表达:

f ( x ) = ∑ j = j 0 ∞ ∑ l = 0 L j − 1 ∑ k ∈ I j , l ⟨ f , φ j , l , k ⟩ φ j , l , k ( x ) f(x) = \sum_{j=j_0}^{\infty} \sum_{l=0}^{L_j-1} \sum_{k \in \mathcal{I}_{j,l}} \langle f, \varphi_{j,l,k} \rangle \varphi_{j,l,k}(x) f(x)=j=j0l=0Lj1kIj,lf,φj,l,kφj,l,k(x)

其中:

  • j 0 j_0 j0 是最粗尺度
  • L j = 2 ⌊ j / 2 ⌋ + 2 L_j = 2^{\lfloor j/2 \rfloor + 2} Lj=2j/2+2 是尺度 j j j 处的角度分区数
  • I j , l \mathcal{I}_{j,l} Ij,l 是曲波指标集
  • 曲波系数计算为:

⟨ f , φ j , l , k ⟩ = ∫ R 2 f ( x ) φ j , l , k ( x ) ‾ d x = ∫ R 2 f ^ ( ω ) φ ^ j , l , k ( ω ) ‾ d ω \langle f, \varphi_{j,l,k} \rangle = \int_{\mathbb{R}^2} f(x) \overline{\varphi_{j,l,k}(x)} dx = \int_{\mathbb{R}^2} \hat{f}(\omega) \overline{\hat{\varphi}_{j,l,k}(\omega)} d\omega f,φj,l,k=R2f(x)φj,l,k(x)dx=R2f^(ω)φ^j,l,k(ω)dω

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值