基于 Skynet Cluster 模式的完整案例

在这里插入图片描述

更多信息 进群了解
QQ群:756167961

以下是一个基于 Skynet Cluster 模式的完整案例,演示跨节点服务注册、调用和动态配置管理:


1. 目录结构

skynet_cluster/
├── config_db          # 数据库节点配置
├── config_gate        # 网关节点配置
├── clustermap.lua     # 集群节点配置文件
├── gate.lua           # 网关节点入口
├── db.lua             # 数据库节点入口
└── simpledb.lua       # 数据库服务代码

2. 集群配置文件 (clustermap.lua)

-- 定义集群节点地址
return {
  gate = "127.0.0.1:7101",  -- 网关节点
  db   = "127.0.0.1:7102",  -- 数据库节点
  -- 可动态添加新节点,例如:
  -- cache = "192.168.1.100:7103",
}

3. 节点配置

config_db (数据库节点)

thread = 4
logger = nil
harbor = 0
start = "db"
bootstrap = "snlua bootstrap"	-- The service for bootstrap
lualoader = "./lualib/loader.lua"

luaservice = "./service/?.lua;./myservice/?.lua;"
lua_path = "./lualib/?.lua;"
lua_cpath = "./luaclib/?.so;"
cpath = "./cservice/?.so"

cluster = "./myservice/clustermap.lua"

config_gate (网关节点)

thread = 4
logger = nil
harbor = 0
start = "gates"
bootstrap = "snlua bootstrap"	-- The service for bootstrap
lualoader = "./lualib/loader.lua"

luaservice = "./service/?.lua;./myservice/?.lua;"
lua_path = "./lualib/?.lua;"
lua_cpath = "./luaclib/?.so;"
cpath = "./cservice/?.so"

cluster = "./myservice/clustermap.lua"

4. 服务代码

simpledb.lua (数据库服务)

local skynet = require "skynet"
require "skynet.manager"	-- import skynet.register
local db = {}

local command = {}

function command.GET(key)
	return db[key]
end

function command.SET(key, value)
	local last = db[key]
	db[key] = value
	return last
end

skynet.start(function()
	skynet.dispatch("lua", function(session, address, cmd, ...)
		cmd = cmd:upper()
		if cmd == "PING" then
			assert(session == 0)
			local str = (...)
			if #str > 20 then
				str = str:sub(1,20) .. "...(" .. #str .. ")"
			end
			skynet.error(string.format("%s ping %s", skynet.address(address), str))
			return
		end
		local f = command[cmd]
		if f then
			skynet.ret(skynet.pack(f(...)))
		else
			error(string.format("Unknown command %s", tostring(cmd)))
		end
	end)
--	skynet.traceproto("lua", false)	-- true off tracelog
	skynet.register "SIMPLEDB"
end)


5. 节点入口脚本

db.lua (数据库节点)

local skynet = require "skynet"
local cluster = require "skynet.cluster"

skynet.start(function()
    -- 启动数据库服务
    local sdb = skynet.newservice("simpledb")

    cluster.register("sdb",sdb)

    print(skynet.call(sdb,"lua","SET","a","showsss"))

    print(skynet.call(sdb,"lua","GET","a"))
    
    -- 打开数据库节点监听
    cluster.open("db")  -- 对应 clustermap 中的 db 配置
    
    skynet.error("Database node ready")
end)

gates.lua (网关节点)

local skynet = require "skynet"
local cluster = require "skynet.cluster"

skynet.start(function()
    -- 打开网关节点监听
    cluster.open("gate")  -- 对应 clustermap 中的 gate 配置
    
    -- 获取数据库服务代理
    local dbproxy = cluster.proxy("db", "@sdb")

    skynet.error("proxy",dbproxy)
    
    -- 测试跨节点调用
    skynet.call(dbproxy, "lua", "SET", "player_1001", '{name="Alice", level=10}')
    local data = skynet.call(dbproxy, "lua", "GET", "player_1001")
    skynet.error(data)

    skynet.fork(function()
		-- skynet.trace("cluster")
		skynet.error(cluster.call("db", "@sdb", "GET", "player_1001"))
	end)
    -- 动态添加新节点示例
    skynet.fork(function()
        skynet.sleep(100)
        cluster.reload({  -- 动态更新集群配置
            -- gate = "127.0.0.1:7101",    -- 网关节点
            db   = false,    -- 数据库节点
            db1 = "127.0.0.1:7103",   -- 新增节点
        })
        local sdb1 = skynet.newservice("simpledb")

        cluster.register("sdb1",sdb1)

        skynet.error("Cluster config updated!")
        local dbproxy = cluster.proxy("gate", "@sdb1")
        cluster.call("gate", "@sdb1", "SET", "player_1001","hishow")

        skynet.error(cluster.call("gate", "@sdb1", "GET", "player_1001"))
    end)
end)

6. 运行步骤

(1) 启动数据库节点

./skynet/skynet skynet_cluster/config_db

(2) 启动网关节点

./skynet/skynet skynet_cluster/config_gate

7. 关键机制说明

1. 服务发现

  • 注册服务cluster.register("@sdb") 在数据库节点注册集群可见服务
  • 获取代理cluster.proxy("db", "@sdb") 获取远程服务代理
  • 直接调用cluster.call("db", "@sdb", "GET", key)

2. 动态配置

-- 动态添加新节点
cluster.reload({  -- 动态更新集群配置
    -- gate = "127.0.0.1:7101",    -- 网关节点
    db   = false,    -- 数据库节点
    db1 = "127.0.0.1:7103",   -- 新增节点
})
  • 所有节点需同步更新配置(实际项目需要自行实现配置同步机制)

3. 错误处理

local ok, res = pcall(cluster.call, "db", "@sdb", "GET", "invalid_key")
if not ok then
    skynet.error("DB query failed:", res)
end

4. 消息可靠性

  • cluster.call:自动重试直到 TCP 连接恢复
  • cluster.send:不保证送达,适合心跳包等非关键数据

8. 高级功能扩展

1. 节点监控

-- 监控 db 节点状态
skynet.fork(function()
    while true do
        local ok = pcall(cluster.call, "db", "@sdb", "PING")
        if not ok then
            skynet.error("DB node unreachable!")
            -- 触发故障转移逻辑
        end
        skynet.sleep(200)  -- 每 2 秒检查一次
    end
end)

2. 负载均衡

-- 随机选择节点
local function get_db_node()
    local nodes = {"db", "db_backup1", "db_backup2"}
    return nodes[math.random(1, #nodes)]
end

local data = cluster.call(get_db_node(), "@sdb", "GET", key)

3. 跨机房部署

-- clustermap.lua
return {
    gate_beijing = "10.1.1.100:7101",
    db_shanghai  = "10.2.1.100:7102",
    cache_guangzhou = "10.3.1.100:7103",
}

9. 故障模拟测试

场景 1:数据库节点宕机

  1. 手动停止数据库节点
  2. 观察网关节点日志:
    [:0000000a] DB node unreachable!
    [:0000000a] Switch to backup node
    
  3. 新请求自动切换到备用节点

场景 2:网络分区

  1. 使用防火墙阻断网关到数据库的端口
    iptables -A INPUT -p tcp --dport 7102 -j DROP
    
  2. 观察网关的 pcall 错误捕获机制
  3. 恢复网络后通信自动恢复

10. 总结

Cluster 模式核心优势

  1. 去中心化架构:无单点故障
  2. 跨物理机支持:天然适应分布式部署
  3. 动态配置管理cluster.reload 实现线上热更新
  4. 细粒度控制:支持多种通信语义(call/send/proxy)

适用场景

  • MMO 游戏服务器:网关/场景/数据库分层部署
  • 微服务架构:订单服务、用户服务独立节点
  • IoT 系统:多个地域的边缘计算节点

性能建议

  • 单个 Cluster 通道支持 10K+ QPS,如需更高吞吐:
    1. 为重要服务建立专用通道
    2. 使用 cluster.open("node", {channel=2}) 开启多通道
    3. 业务层做分流:channel = key % N + 1

完整代码示例 可在 Skynet 官方仓库获取。

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值