01 动手学习深度学习-配置环境pytorch

一、需要的配置以及准备

  • 学习环境:windows10 + anaconda + python3.7 + jupyter notebook + cuda + cudnn
  • GPU版本:CUDA(11.6)+ cudnn(相应cuda版本)

二、安装anaconda

参考:https://blog.csdn.net/qq_44653420/article/details/122111441?spm=1001.2014.3001.5502

检查conda的版本:conda --version

切换anconda的镜像源:切换国内清华的镜像源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --set show_channel_urls yes

设置搜索时显示通道的地址:

conda config --set show_channel_urls yes

显示源:

conda config --show channels

删除源:

conda config --remove channels 源名称或者链接

二、安装CUDA:

先检查显卡驱动:cmd命令行输入nvidia-smi 找到对应的cuda版本。
在这里插入图片描述

cuda下载地址:
https://developer.nvidia.com/cuda-toolkit-archive
安装可以选择别的路径,安装之后,输入nvcc -V检查安装情况

测试cuda是否安装成功:nvcc -V
在这里插入图片描述

三、安装CUDNN

需要先注册才可以下载,(可以使用微信登录),下载解压之后,做如下操作:

  • 将cudnn\bin目录中的 cudnn64_8.dll 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin 中
  • 将cudnn\include目录中的 cudnn.h 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include中
  • 将cudnn\lib\x64 目录中的 cudnn.lib 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib\x64 中
  • 环境变量已经自动添加过

四、安装pytorch

  1. 新建一个conda环境

    • 在anaconda prompt中使用以下命令检查已经存在的conda环境:conda info -e

    • 创建一个虚拟环境:conda create -name 名称 python=3.7

    • 激活环境:conda activate 名称

    • 退出环境:conda deactivate 名称

  2. 安装pytorch

    官网https://pytorch.org/复制如下命令,在刚才新建的环境中输入:conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

在这里插入图片描述

  1. 测试pytorch的安装
    命令行中,先输入python,转到python解释器环境中

    import torch
     from __future__ import print_function
     x = torch.rand(5,3)
     print(x)
     torch.cuda.is_available() # 测试CUDA是否可用
    

    参考李沐老师的视频讲解https://www.bilibili.com/video/BV18K411w7Vs?spm_id_from=333.1007.top_right_bar_window_history.content.click

五、安装jupyter notebook

打开动手学习深度学习网页下载压缩包:http://zh.d2l.ai/

选择一个位置解压压缩包。

然后安装需要的包:pip install jupyter d2l

安装完毕之后,到刚才解压d2l文件夹下面打开anaconda prompt 输入jupyter notebook

在这里插入图片描述
在这里插入图片描述

进入pytorch,可以运行书中的一些代码。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少写代码少看论文多多睡觉

求打赏,求关注,求点赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值