01 动手学习深度学习-配置环境pytorch
一、需要的配置以及准备
- 学习环境:windows10 + anaconda + python3.7 + jupyter notebook + cuda + cudnn
- GPU版本:CUDA(11.6)+ cudnn(相应cuda版本)
二、安装anaconda
参考:https://blog.csdn.net/qq_44653420/article/details/122111441?spm=1001.2014.3001.5502
检查conda的版本:conda --version
切换anconda的镜像源:切换国内清华的镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
设置搜索时显示通道的地址:
conda config --set show_channel_urls yes
显示源:
conda config --show channels
删除源:
conda config --remove channels 源名称或者链接
二、安装CUDA:
先检查显卡驱动:cmd命令行输入nvidia-smi 找到对应的cuda版本。
cuda下载地址:
https://developer.nvidia.com/cuda-toolkit-archive
安装可以选择别的路径,安装之后,输入nvcc -V检查安装情况
测试cuda是否安装成功:nvcc -V
三、安装CUDNN
需要先注册才可以下载,(可以使用微信登录),下载解压之后,做如下操作:
- 将cudnn\bin目录中的 cudnn64_8.dll 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\bin 中
- 将cudnn\include目录中的 cudnn.h 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\include中
- 将cudnn\lib\x64 目录中的 cudnn.lib 复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\lib\x64 中
- 环境变量已经自动添加过
四、安装pytorch
-
新建一个conda环境
-
在anaconda prompt中使用以下命令检查已经存在的conda环境:conda info -e
-
创建一个虚拟环境:conda create -name 名称 python=3.7
-
激活环境:conda activate 名称
-
退出环境:conda deactivate 名称
-
-
安装pytorch
官网
https://pytorch.org/
复制如下命令,在刚才新建的环境中输入:conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
-
测试pytorch的安装
命令行中,先输入python,转到python解释器环境中import torch from __future__ import print_function x = torch.rand(5,3) print(x) torch.cuda.is_available() # 测试CUDA是否可用
参考李沐老师的视频讲解
https://www.bilibili.com/video/BV18K411w7Vs?spm_id_from=333.1007.top_right_bar_window_history.content.click
五、安装jupyter notebook
打开动手学习深度学习网页下载压缩包:http://zh.d2l.ai/
选择一个位置解压压缩包。
然后安装需要的包:pip install jupyter d2l
安装完毕之后,到刚才解压d2l文件夹下面打开anaconda prompt 输入jupyter notebook
进入pytorch,可以运行书中的一些代码。