【动态规划】 LCR 099. 最小路径和

本文详细介绍了如何通过动态规划方法解决最小路径和问题,以一个矩阵网格为例,利用备忘录技术存储已计算过的子问题结果,避免重复计算,最终返回从右下角到左上角的最短路径总和。
摘要由CSDN通过智能技术生成

LCR 099. 最小路径和

解题思路

  • 采用动态规划的思路
  • 每次搜索都是向上或者向左进行搜索
  • dp(grid, i, j) 的值取决于 dp(grid, i - 1, j) 和 dp(grid, i, j - 1) 返回的值。
  • 同时(i,j)到(i - 1,j - 1)有两种方法,所以一定存在重叠子问题
  • 设置备忘录Memo存储dp过程中所有重叠子问题的解

class Solution {
    int[][] memo;// 备忘录


    public int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        memo = new int[m][n];
        for(int[] row:memo){
            Arrays.fill(row,-1);
        }
        return dp(grid,grid.length - 1,grid[0].length - 1);
    }

    int dp(int[][] grid,int i,int j){
        if(i == 0 && j == 0){
            return grid[0][0];
        }

        if(i < 0 || j < 0){
            return Integer.MAX_VALUE;
        }

        // 查找备忘录 有没有子问题的结果
        if(memo[i][j] != -1){
            return memo[i][j];
        }

        memo[i][j] = Math.min(dp(grid,i - 1,j),dp(grid,i,j - 1)) + grid[i][j];

        return memo[i][j];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少写代码少看论文多多睡觉

求打赏,求关注,求点赞

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值