隐私保护图像复原|PIRNet: Privacy-Preserving Image Restoration Network via Wavelet Lifting

来源ICCV2023

领域:【保护隐私的图像修复Privacy-preserving Image Restoration】

提出问题:云环境中隐私泄露问题日益严重,因此提出了许多图像加密技术,但是加密后的图像与自然图像大相径庭,容易引起攻击。

解决问题:基于小波提升的隐私保护图像复原网络PIRNet可以在隐写术领域进行隐私保护图像复原。在整个图像复原过程中,秘密图像始终处于隐藏状态(不泄露原图像的情况下),用户隐私得到了极大保护。

贡献

1.PIRNet 在各种保护隐私的图像复原任务(包括图像去噪、去模糊和超分辨率)上都优于现有方法。

2.揭示了隐写图像质量变化恢复后的秘密图像之间的相关性。

3.本文是第一个在隐写术领域探索隐私保护图像复原的工作。

拟提出的云图像隐私保护恢复方法示意图

本文方法:

首先提出一个发现隐写图像的质量变化会敏感地影响到恢复的秘密图像的质量,而且具有良好的一致性。因此,通过对隐写图像的处理,可以在很好地保护隐私的情况下还原秘密图像

为了验证这个发现,做了两个实验:

实验1:应用三种图像去噪网络移除隐写图像中的噪声,然后用PSNR和SSIM衡量隐写图像和恢复秘密图像的质量。     

结果如图:隐写图像质量越高,恢复的秘密图像质量也就越高。这表明对隐写图像的处理会敏感的影响恢复秘密图像的质量。

实验2:加不同程度的高斯噪声(5,10,15)来降低隐写图像的质量。如(c)和(d)。

结果如图:可见随着噪声水平的提高,隐写图像质量下降,恢复的秘密图像的质量也相应变差。

综上结果说明:对隐写图像的处理对秘密图像的影响是一致的。

这些发现启发了本文的网络设计思想:隐写图像是进行隐私保护图像复原的一个很好的域;可逆网络在将隐写域和恢复域紧密联系方面发挥了重要作用,并得益于可逆网络的稳定可逆性,隐写域可以对恢复域产生稳定一致的影响,从而为隐私保护图像复原带来显著的好处。

框架:PIRNet由基于提升的可逆隐藏网络(LIH)和基于提升的安全还原网络(LSR)组成。

LIH网络完成秘密图像隐藏操作生成隐写图像,并输入到LSR网络中,LSR网络在不泄露秘密图像的情况下对隐写图像进行操作。最后经LSR处理后的隐写图像{x_{stego}}^{'}被送回LIH网络,以恢复高质量(HQ)秘密图像x_{secret}^{'}

下面是各模块的详细介绍:

LIH:可以同时隐藏三种不同类型的降级图像(包括噪声,模糊和低分辨率伪影)

输入:退化的x_{secret}x_{cover}首先被DWT分解成小波子带X_{secret}X_{cover};然后,小波子带被送入多个小波提升块(WL),生成隐写子带X_{stego}和辅助信息R(包含前向隐藏过程中丢失的信息,这对保持LIH的可逆性非常重要)。在后向恢复过程中,由于R不可用,采用辅助变量Z并假设其与R具有相同的高斯分布。然后经过处理的小波子带{x_{stego}}^{'}和随机取样的Z被送回LIH网络,用来恢复秘密图像。

小波提升块WL:LIH的基本单元,利用双流网络结构实现前向隐藏和后向恢复,共享参数。LIH中共有M=24个WL块。对于前向隐藏的第i个块:P和U分别表示预测和更新操作,可以是任何函数,本文采用残差网络来表示。

 对于后向恢复的第i个块:

 在最后一个WL块之后,可以得到秘密子带Xsr=Z1.然后通过反变换将其变换回图像。

这里插入一个分析:为什么用WL?:本文的工作重点是退化图像的修复,其关键是恢复高频细节。小波提升可以自然的分割高低频细节,给图像复原任务带来好处。

基于提升的安全还原网络LSR:用于执行不同类型的秘密图像还原,包括去噪、去模糊和超分辨率等。需要注意的是,在LSR中,所有的还原操作都是在隐写图像上进行的。因此在LSR中秘密图像不会被泄露。LSR是根据小波提升的多尺度特性设计的,由K个基于小波提升的安全恢复子网组成,用于更新低频和高频小波子带,并由一个安全恢复块SRM对高频子带执行还原操作。

LSR的输入是由LIH生成的X_{stego}。首先经过逆小波变换使其变回图像,然后使用DWT将图

像分解为新的低频和高频子带。(图中未展示)低频和高频子带被送入第一子网,经过几个

WL块之后,可以得到更新后的低频子带L1和高频子带H1。然后在H1上应用SRM模

块,生成恢复的高频子带H1'.

对于低频子带L1,进一步通过DWT将其分割,并将新的子带发送到下一个子网。最后经过

K次缩放,我们可以得到LKHKHK经过SRM处理后生成HK‘LK保持不变。

为了与 LIH 网络保持一致,LSR 网络也有两个逆过程。前向过程和后向过程中的 WL 块共

享相同的网络参数。后向过程以HK‘LK为输入,从K级开始,在后向结束时,我们可以得

到隐写图像的恢复小波子带{x_{stego}}^{'},然后将其发送给LIH网络以恢复HQ秘密图像x_{secret}^{'}

安全恢复模块SRM :为了处理不同类型的降级,建议将SRM设计为多任务学习框架,如图:

具体来说,SRM由一个编码器和多个解码器组成,分别用于不同的修复任务。所有恢复任务

共用一个编码器,可以提高泛化能力,节省计算资源。在解码方面考虑到不同的修复任务有

不同的修复难度,因此将解码架构与任务难度相关联,形成一个单元化的分层解码架构。从

上图中可以看出有三个不同的任务,包括图像去噪、去模糊和超分辨率(SR)。SR 任

务是最难的任务,其次是去模糊和去噪。因此,我们在 SR 和去模糊任务的共享编码器上扩

展了额外的中间块,然后将它们连接到特定任务的解码器上。在这里,所有任务的解码器设

计都是一样的。编码器和解码器都采用 U-Net 结构,采用 NAFBlock 作为构建编码器、解码器和中间块的基本模块,因其简单且性能良好。

这里插入一个分析:为什么只在隐写图像的高频子带上应用SRM,原因有两个:首先在LIH中,秘密图像的大部分信息都隐藏在隐写图像的高频子带中,由于最终的目的是还原秘密图像,因此最好对高频子带进行处理。其次,图像降解过程会丢失高频信息,因此在高频子带上应用SRM可以帮

助更好的恢复丢失的图像细节。

训练策略:第一阶段使用hiding损失(隐写&载体损失+秘密&恢复损失+低频小波损失)训练LIH网络,然后,冻结LIH,通过安全恢复损失训练LSR网络,最后端到端的方式对整个网络进行微调。

安全恢复损失用于训练LSR网络,目标是是恢复后的HQ秘密图像x_{secret}^{'}接近真实值Ground Truthx_{gt},同时确保处理后的{x_{stego}}^{'}x_{cover}尽可能相似。由于LSR网络具有多任务结构,损失描述为:

三个小写\iota分别代表去噪、去模糊和超分辨率任务的损失,可以统一定义为:

stego损失定义为{x_{stego}}^{'}x_{cover}之间的相似性:

数据集:采用了 DIV2K 数据集,其中 800 幅图像用于训练,100 幅图像用于测试。图像复原任务包括典型的图像去噪、图像去模糊和图像超分辨率。

评价指标:PSNR SSIM LPIPS

  • 8
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值