隐私保护图像复原|PIRNet: Privacy-Preserving Image Restoration Network via Wavelet Lifting

本文提出了一种基于小波提升的隐私保护图像复原网络PIRNet,它在云环境下有效解决隐私泄露问题。PIRNet在图像去噪、去模糊和超分辨率任务中表现出色,且发现隐写图像质量与恢复秘密图像质量高度相关。该工作首次探索了隐写术领域的隐私保护图像复原,并展示了其在保护用户隐私的同时保持图像质量的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源ICCV2023

领域:【保护隐私的图像修复Privacy-preserving Image Restoration】

提出问题:云环境中隐私泄露问题日益严重,因此提出了许多图像加密技术,但是加密后的图像与自然图像大相径庭,容易引起攻击。

解决问题:基于小波提升的隐私保护图像复原网络PIRNet可以在隐写术领域进行隐私保护图像复原。在整个图像复原过程中,秘密图像始终处于隐藏状态(不泄露原图像的情况下),用户隐私得到了极大保护。

贡献

1.PIRNet 在各种保护隐私的图像复原任务(包括图像去噪、去模糊和超分辨率)上都优于现有方法。

2.揭示了隐写图像质量变化恢复后的秘密图像之间的相关性。

3.本文是第一个在隐写术领域探索隐私保护图像复原的工作。

拟提出的云图像隐私保护恢复方法示意图

本文方法:

首先提出一个发现隐写图像的质量变化会敏感地影响到恢复的秘密图像的质量,而且具有良好的一致性。因此,通过对隐写图像的处理,可以在很好地保护隐私的情况下还原秘密图像

为了验证这个发现,做了两个实验:

实验1:应用三种图像去噪网络移除隐写图像中的噪声,然后用PSNR和SSIM衡量隐写图像和恢复秘密图像的质量。     

结果如图:隐写图像质量越高,恢复的秘密图像质量也就越高。这表明对隐写图像的处理会敏感的影响恢复秘密图像的质量。

实验2:加不同程度的高斯噪声(5,10,15)来降低隐写图像的质

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值