来源ICCV2023
领域:【保护隐私的图像修复Privacy-preserving Image Restoration】
提出问题:云环境中隐私泄露问题日益严重,因此提出了许多图像加密技术,但是加密后的图像与自然图像大相径庭,容易引起攻击。
解决问题:基于小波提升的隐私保护图像复原网络PIRNet可以在隐写术领域进行隐私保护图像复原。在整个图像复原过程中,秘密图像始终处于隐藏状态(不泄露原图像的情况下),用户隐私得到了极大保护。
贡献:
1.PIRNet 在各种保护隐私的图像复原任务(包括图像去噪、去模糊和超分辨率)上都优于现有方法。
2.揭示了隐写图像质量变化与恢复后的秘密图像之间的相关性。
3.本文是第一个在隐写术领域探索隐私保护图像复原的工作。
拟提出的云图像隐私保护恢复方法示意图:
本文方法:
首先提出一个发现:隐写图像的质量变化会敏感地影响到恢复的秘密图像的质量,而且具有良好的一致性。因此,通过对隐写图像的处理,可以在很好地保护隐私的情况下还原秘密图像。
为了验证这个发现,做了两个实验:
实验1:应用三种图像去噪网络移除隐写图像中的噪声,然后用PSNR和SSIM衡量隐写图像和恢复秘密图像的质量。
结果如图:隐写图像质量越高,恢复的秘密图像质量也就越高。这表明对隐写图像的处理会敏感的影响恢复秘密图像的质量。
实验2:加不同程度的高斯噪声(5,10,15)来降低隐写图像的质