文章来源:
提出问题:目前的图像隐写技术主要集中在基于载体的方法上,这些方法普遍存在泄露秘密图像的风险和对退化隐写图像的鲁棒性差的问题。(安全性和鲁棒性差)
解决问题:受扩散模型最新发展的启发,本文发现扩散模型的两个特性,即无需训练即可实现两幅图像之间的平移,以及对噪声数据的鲁棒性,可用于提高图像隐写任务的安全性和自然鲁棒性。
这是第一项将扩散模型引入图像隐写术领域的工作。
本文主要实现了以下性能:
(1)安全性:通过利用 DDIM 反转技术进行基于扩散的图像转换,确保了转换过程的可逆性。这种可反转的翻译过程实现了无载体的隐写术框架,确保了隐藏图像的安全性。
(2)可控性:条件扩散模型强大的控制能力使容器图像具有很强的可控性,而且扩散模型的生成先验保证了图像的视觉质量;
(3)鲁棒性:扩散模型本质上是高斯去噪器,对噪声和扰动具有天然的鲁棒性。即使隐写图像在传输过程中出现劣化,仍然可以揭示秘密图像的主要内容。
扩散模型(Diffusion Model)是一种生成模型,通过训练从噪声分布中学习目标图像分布。"稳定扩散 是目前最受欢迎和最繁荣的社区之一,它拥有大量免费的开源工具,包括在各种专业数据集上微调的模型检查点。此外,这些社区还提供各种LoRA和ControlNets,用于有效控制稳定扩散生成的结果。LoRAs 通过以低秩方式有效修改一些网络参数来实现控制,而 ControlNets 则引入了一个额外的网络来修改稳定扩散的中间特征以实现控制。上述最新进展增强了本文的 CRoSS框架。
本文方法:(实际上就是一种基于扩散模型的无载体隐写)
(1)安全性:即使隐写图像被其他接收器截获,隐藏的秘密图像也不会泄露。
(2)可控性&#