给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。
输入格式
第一行包含整数n。
接下来n行,每行包含一组数据ai,bi,mi。
输出格式
输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。
每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。
输出答案必须在int范围之内。
数据范围
1≤n≤1e5,
1≤ai,bi,mi≤2e9
输入样例:
2
2 3 6
4 3 5
输出样例:
impossible
7
思路:
首先我们要化简题目中所给的式子:ai∗xi≡bi(mod mi)
这个式子等价于:ai∗xi=bi-mi*yi
移项得:ai∗xi+mi*yi=bi,其中xi与yi皆为整数。
假设k为ai和mi的最大公约数,则ai*xi也为k的倍数,mi*yi也为k的倍数,两者相加也为k的倍数
因此若要此方程有解,则要求bi也为k的倍数。
下面就是裴蜀定理的知识点。先介绍一下裴蜀定理,即:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使