【欧几里得】线性同余方程

给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。

输入格式

第一行包含整数n。

接下来n行,每行包含一组数据ai,bi,mi。

输出格式

输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在int范围之内。

数据范围

1≤n≤1e5,
1≤ai,bi,mi≤2e9

输入样例:

2
2 3 6
4 3 5

输出样例:

impossible
7

 

思路:

首先我们要化简题目中所给的式子:ai∗xi≡bi(mod mi)

这个式子等价于:ai∗xi=bi-mi*yi

移项得:ai∗xi+mi*yi=bi,其中xi与yi皆为整数

假设k为ai和mi的最大公约数,则ai*xi也为k的倍数,mi*yi也为k的倍数,两者相加也为k的倍数

因此若要此方程有解,则要求bi也为k的倍数

下面就是裴蜀定理的知识点。先介绍一下裴蜀定理,即:若a,b是整数,且gcd(a,b)=d,那么对于任意的整数x,y,ax+by都一定是d的倍数,特别地,一定存在整数x,y,使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值