题目描述
Alice和Bob玩了一个古老的游戏:首先画一个n × n的点阵(下图n = 3)
接着,他们两个轮流在相邻的点之间画上红边和蓝边:
直到围成一个封闭的圈(面积不必为1)为止,“封圈”的那个人就是赢家。因为棋盘实在是太大了(n ≤ 200),他们的游戏实在是太长了!他们甚至在游戏中都不知道谁赢得了游戏。于是请你写一个程序,帮助他们计算他们是否结束了游戏?
输入
输入数据第一行为两个整数n和m。m表示一共画了m条线。以后m行,每行首先有两个数字(x, y),代表了画线的起点坐标,接着用空格隔开一个字符,假如字符是"D ",则是向下连一条边,如果是"R "就是向右连一条边。输入数据不会有重复的边且保证正确。
输出
输出一行:在第几步的时候结束。假如m步之后也没有结束,则输出一行“draw”。
样例输入
3 5
1 1 D
1 1 R
1 2 D
2 1 R
2 2 D
样例输出
4
思路:并查集,只要相连的两个点属于同一个集合,那么也就证明整个图形已经封闭
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
int n,m,f[205][205],fla=0,x,y,x1,y1;//f用于记录父亲
char t;
int father(int i,int j)//此函数用于查找源头的父亲
{
if(f[i][j]==(i*300+j))
return f[i][j];
int k = father(f[i][j]/300,f[i][j]%300);
f[i][j]=k;
return k;
}
int main()
{
//初始化,保证每两个点的值都不一致
for(int i = 1; i <= 200; i++)
{
for(int j = 1; j <= 200; j++)
f[i][j]=i*300+j;
}
scanf("%d %d",&n,&m);
for(int i = 1; i <= m;i++)
{
scanf("%d %d %c",&x,&y,&t);
//找到要相连的两个点
if(t=='R')
{
x1=x,y1=y+1;
}
else
{
x1=x+1,y1=y;
}
//如果两个点属于同个集合,则结束
if(father(x,y)==father(x1,y1)&&fla==0)
{
fla=i;
}
//如果两个点不属于同个集合,则将他们归在一起
else if(fla==0)
{
f[father(x,y)/300][father(x,y)%300]=father(x1,y1);
}
}
if(fla==0)
printf("draw\n");
else
printf("%d\n",fla);
return 0;
}