【大数+区间dp】矩阵取数

这是一篇关于解决矩阵取数游戏的算法问题的文章。游戏规则要求每次从每行取一个元素,且只能取行首或行尾,得分根据取数位置计算。文章提出了一种动态规划的方法,通过状态转移方程求解每行的最大得分,并最终求出所有行得分之和,以找出矩阵取数后的最大得分。样例输入和输出展示了算法的正确性,60%的数据规模较小,100%的数据范围为1<=n, m<=80,元素值不超过1000。" 110292137,8070352,C++顺序容器操作:push/pop及insert/erase详解,"['C++', '容器', '算法']
摘要由CSDN通过智能技术生成

题目描述:帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的nXm的矩阵,矩阵中的每个元素a均
为非负整数。游戏规则如下
①每次取数时须从每行各取走一个元素,共n个。m次后取完矩阵所有的元素
②每次取走的各个元素只能是该元素所在行的行首或行尾;
2、③每次取数都有一个得分值,为每行取数的得分之和;每行取数的得分=被取走的元素值*(2^i)
其中i表示第i次取数(从1开始编号)
④游戏结東总得分为m次取数得分之和
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入
输入文件包括n+1行

第一行为两个用空格隔开的整数n和m
第2-n+1行为N*M矩阵,其中每行m个用单个空格隔开
输出
输出文件仅包含一行,为一个整数,即输入矩阵去数后的最大得分
样例输入
2 3
1 2 3
3 4 2
样例输出
82
提示

60%的数据满足:1<=n, m<=30,答案不超过10^16
100%的数据满足:1<=n, m<=80,0<=aij<=1000

思路:每行之间的取数其实并不互相影响,所以只需求每行的最大分数,再将每行的最大分数加起来即可。这样问题就转换成了求每一行的最大分数。状态转移方程为maxi[k][j]=max(maxi[k][j-1]+a[i][j](ll)(pow(2,m-j+k)),maxi[k+1][j]+a[i][k](ll)(pow(2,m-j+k)));
也即只需判断比较是先取左边的结果较大还是先加右边的结果较大。
这是对于一般数据的AC代码:

#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
#define ll long long
int n,m;
ll sum = 0,maxi[105][105],a[105][105]={0};
ll max(ll x,ll y)
{
    if(x>y)
        return x;
    else
        return y;
}
int main()
{
    scanf("%d %d",&n,&m);
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
        {
            scanf("%lld",&a[i][j]);
        }
    for(int i = 1; i <= n; i++)
    {
        memset(maxi,0,sizeof(maxi));
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值