4-1 被3整除的子序列

这是一道关于计算数字串子序列被3整除的算法问题。给定长度不超过50的数字串,目标是找出所有子序列中能被3整除的数量,并对1e9+7取模。解决方案涉及到动态规划,通过维护每个位置的数字对3取余后的状态,结合前一状态计算当前状态的子序列总数。
摘要由CSDN通过智能技术生成

题目来源:牛客网

题目描述

给你一个长度为50的数字串,问你有多少个子序列构成的数字可以被3整除
答案对1e9+7取模

输入描述:

输入一个字符串,由数字构成,长度小于等于50

输出描述:

输出一个整数

输入

132
9

输出

3
1

思路:

因为被3取余只可能是 0 1 2
所以每次提取一个数字把它现有的可能和之前的可能性相结合就可以得到每次的被3整除的总数。

dp [ i ] [ j ] += ( dp [ i - 1 ] [ j ] + dp [ i - 1 ] [ ( j + 3 - x ) % 3 ] ) % mod ; // 本身 之前不加 之前加本

AC代码:

#include<bits/stdc++.h>
using namespace std;

string t;
int dp[55][3];
int x;
const int mod
### 回答1: 这是一个关于去除子序列中包含数字3的题目。给你一个长度为50的数字串,问你有多少个子序列构成的数字串可以被3整除。答案为1e9+7取模。 输入描述: 输入一个字符串,由0-9组成,长度小于等于50。 输出描述: 输出一个整数,表示答案。 输入一个长度为50的数字字符串,由数字组成。让你输出里面去掉子序列包含数字3的数字串的长度。举个例子,输入132,因为包含3,所以去掉{3,13,32,132}四个子序列,去掉后只剩下1个子序列2,所以输出3。 ### 回答2: 本题可以使用动态规划的思路来解决。我们可以使用一个二维数组dp[i][j]表示以第i个数字结尾的长度为j的子序列能否被3整除,其中i的范围是1到50,j的范围是1到50。dp[i][j]的值为0或1,0表示不能被3整除,1表示能被3整除。 对于dp[i][j],我们可以通过dp[i-1][j-1]或dp[i-1][j]来转移。如果dp[i-1][j-1]为1,则说明在前面的j-1个数字中有一个子序列能被3整除,此时如果第i个数字为0、3、6或9,则dp[i][j]也能被3整除,否则不能;如果dp[i-1][j]为1,则说明在前面的j个数字中有一个子序列能被3整除,此时如果第i个数字为1、4或7,则dp[i][j]也能被3整除,否则不能。 最终,我们只需要将dp数组中所有值等于1的元素的个数相加,并将结果对1e9+7取模即可。 以下是完整代码: ### 回答3: 题目描述 给定一个长度为50的数字串,求出其中有多少个子序列的和可以被3整除。输出对10^9+7取模的答案。 思路分析 我们可以先将给定的数字串转换成数字数组,将其看做是一个长度为n的数组a。我们令dp[i][0]为a[1]~a[i]中被3整除子序列的个数,dp[i][1]为a[1]~a[i]中余1的子序列的个数,dp[i][2]为余2的子序列的个数。注意我们计算余数时可以直接用数值模3,余数就是该数值除以3的余数。 那么如果我们现在已经求出了dp[i-1][0],dp[i-1][1]和dp[i-1][2],我们如何求dp[i][0],dp[i][1]和dp[i][2]呢?我们考虑当前数值a[i]对于这三种状态的影响: 如果a[i]可以被3整除,那么它可以加入到之前状态为0的所有子序列中,我们有dp[i][0] = dp[i-1][0] + 1,同时之前状态为1的子序列末尾加入该数后会变成状态为0的子序列,同样的,之前状态为2的子序列末尾加入该数也会变成状态为1的子序列,所以我们还需要加上dp[i-1][1]和dp[i-1][2]; 如果a[i]除以3余1,那么它可以加入到之前状态为2的所有子序列中,我们有dp[i][1] = dp[i-1][1] + 1,同时之前状态为0的子序列末尾加入该数后会变成状态为1的子序列,同样的,之前状态为1的子序列末尾加入该数也会变成状态为2的子序列,所以我们还需要加上dp[i-1][0]和dp[i-1][2]。 如果a[i]除以3余2,那么同理可以得到dp[i][2]的状态转移方程。 最终我们的答案即为dp[n][0],因为被3整除的数字序列余数为0。同时,我们要注意答案需要对1e9+7取模。 时间复杂度为O(n)。 参考代码 这里给出Java代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值