(2025,对话微调,单轮/多轮推理,医生-患者对话,Muddy Maze 基准)对话胜过独白——通过战略对话指导医学LLM

Dialogue is Better Than Monologue - Instructing Medical LLMs via Strategical Conversations

目录

1. 概述

2. 研究背景与动机

3. 方法

3.1 基准测试 Muddy Maze

3.2 对话微调(Dialogue Tuning)

4. 实验结果分析

4.1 对话微调 vs. 传统方法

4.2 抗噪能力分析

4.3 结合多种对话数据的影响

5. 结论


1. 概述

该论文研究了 医学大语言模型(Medical LLMs)临床推理中的表现,并提出了一种新的基准测试对话式微调(Dialogue Tuning) 方法,以提升模型的 多轮推理能力抗噪性能

研究发现,与传统的 单轮多项选择题微调(Monologue Tuning) 相比,对话微调 能够更好地模拟医生的思维过程,使模型在复杂诊断任务中的表现提升 9.64%(多轮推理)6.18%(抗噪环境准确率)

研究贡献:

  • 首次提出对话微调(Dialogue Tuning)用于医学 LLM 训练,并证明其对多轮推理和抗噪能力的提升
  • 构建新评测基准 Muddy Maze,包括 一轮证据排序(One-Round Evidence Ranking)多轮证据排序(Multi-Round Evidence Ranking),模拟医生诊断流程,填补现有医疗 AI 评测中缺乏真实临床推理的空白。
  • 提出对话数据增强方法,将多项选择题和医学文章转换为医生-患者对话,促进模型在真实医疗交互场景中对动态推理过程的学习。
  • 实验表明,对话训练能让模型在多轮证据排序任务中表现更优,有助于医疗 AI 走向真实临床应用

2. 研究背景与动机

现有医学 LLM 存在的问题

  • 传统医疗 AI 主要基于多项选择(MCQA)文章问答(Article QA) 进行训练,但这类方法缺乏真实的临床推理能力
  • 医生在临床诊断过程中通常逐步收集信息、筛选无关数据、进行假设验证,但现有 LLM 缺乏这种迭代推理能力
  • 现有评测基准通常关注静态问题(单轮问题-答案匹配),忽略了真实临床决策中的交互和证据整合

对话微调(Dialogue Tuning)的潜力

  • 医生在现实场景中通常采用 对话式推理,通过问诊逐步排查病因。
  • 对话数据 能够更好地模拟真实世界的医生-患者互动,使模型学会逐步推理,而非仅仅进行模式匹配。

3. 方法

3.1 基准测试 Muddy Maze

Muddy Maze 评测基准主要包括两个任务:

  • 单轮证据排序(One-Round Ranking):给定患者信息,模型需要从证据池中找到最重要的证据,并按照逻辑顺序排序。
  • 多轮证据排序(Multi-Round Ranking):模型需要逐步选择和整合证据,并在多个回合后得出最终诊断。

基准测试的难度等级:

  • 基础(Basic):直接识别关键医学知识点。
  • 高级(Advanced):需要结合多条证据进行推理。
  • 挑战(Challenge):包含大量无关信息,模拟真实医生面对的信息噪声问题。

3.2 对话微调(Dialogue Tuning)

  • 数据转换:将传统多项选择题文章数据转换为医生-患者对话
  • 信息迭代更新:让模型学习逐步获取证据,而不是一次性获得所有信息。
  • 信息熵减少(Entropy Reduction):随着模型获取更多信息,不确定性减少,逐步逼近最终诊断。

其中,ε_t 是第 t 步的证据集(Evidence set),e_new 是收集到的新信息,D 为最终输出。

4. 实验结果分析

4.1 对话微调 vs. 传统方法

多轮证据推理:对话微调(Dialogue Tuning)相较于多选问答训练(MCQA),在 多轮任务(Multi-Round) 中提升 8.07%~9.64%

单轮证据排序:对话微调在 单轮任务(One-Round) 中提升 1.56%~3.42%,但优势不如多轮推理明显。

文章 vs. 对话数据:相比于直接使用文章数据(Article Tuning),对话训练能够 提升 9.36%(基础任务)2.06%(高级任务) 的推理能力。

4.2 抗噪能力分析

现实临床场景包含大量无关信息,医生需要从噪声中筛选关键证据。

高噪声环境(噪声等级 5),对话训练的模型的准确率仍然比传统方法高,表明其抗噪能力更强。

4.3 结合多种对话数据的影响

研究发现,结合不同来源的对话数据(MCQA 转换的对话 + 文章转换的对话)能提升模型泛化能力。

例如,结合两种对话数据后,LLaMA-3.2 在基础任务的单轮推理准确率提升 21.4%

5. 结论

本文提出 对话微调(Dialogue Tuning),通过转换传统医学训练数据医生-患者对话,提升了医学 LLM 的 多轮推理能力和抗噪性能。实验表明,对话微调比传统 多项选择训练(MCQA)文章训练(Article Tuning) 更符合真实世界的医学推理过程。研究为未来医疗 AI 发展提供了新的方向,使 LLM 更接近 医生的诊断逻辑

未来研究方向:

  • 扩展多模态学习:结合医学影像、病历文本、语音对话,提升 AI 诊断能力。
  • 优化训练数据:收集更真实的医生-患者对话数据,减少合成数据带来的偏差。
  • 实际临床应用验证:在真实临床环境中评估 AI 的推理能力,确保安全性和可靠性。
  • 提升模型鲁棒性:探索更强的抗噪方法,使模型在低质量数据或不完整病史的情况下仍能推理。

论文地址:https://arxiv.org/abs/2501.17860

进 Q 学术交流群:922230617 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值