(2025|ICLR|Sea AI & SMU,回归模型,以小见大)RegMix:用于语言模型预训练的作为回归的数据混合

RegMix: Data Mixture as Regression for Language Model Pre-training

目录

1. 引言

2. 相关工作

2.1 数据选择与数据混合

2.2 数据扩展法则(Scaling Laws)

3. RegMix 方法

3.1 方法概述

3.2 小规模代理模型训练

3.3 回归模型

3.4 预测与大规模模型训练

4. 回归预测评估

4.1 实验设置

4.2 主要结果

5. 下游任务评估

5.1 数据混合影响

5.2 Web 语料比 Wikipedia 更优

5.3 REGMIX vs. 其他方法

5.4 数据域交互的复杂性

5.5 数据混合的影响是否遵循扩展法则(Scaling Laws)

5.6 REGMIX 在 100 个数据域上的扩展能力

6. 结论


1. 引言

在大规模语言模型(LLMs)预训练过程中,数据混合的选择显著影响模型性能。然而,如何确定最优数据混合仍然是一个未解决的问题。本文提出了一种新的方法——RegMix,将数据混合问题建模为回归任务,通过训练小规模模型来预测不同数据混合的影响,从而自动选择高性能的数据组合。

主要贡献包括

  • 提出 REGMIX,利用小规模模型的实验结果,训练回归模型来预测大规模模型的最佳数据混合。
  • 通过 512 个 1M 参数的小模型训练回归模型,并用于预测 64 个 1B 参数模型的最佳数据混合。
  • 证明 RegMix 在 多种基准任务上超越了人类选择的数据混合策略,并且相比 DoReMi 方法,仅使用 10% 的计算资源就能获得相似或更好的效果。

图 2

  • 左图:我们假设数据混合在模型大小和训练 token 数量上具有秩不变性。利用这一假设,我们使用在较少 token 上训练的小型模型来预测训练具有更多 token 的大型模型的有效数据混合。
  • 右图:通过训练 512×1M 模型,我们的方法在训练 64×1B 模型之前确定了最佳数据混合。预测的最佳数据混合(用红星表示)实现了最低的验证损失。 

研究表明:

  • 数据混合对下游任务的影响极大,甚至可导致 14.6% 的性能差距
  • Web 语料(如 CommonCrawl)比 Wikipedia 更有利于模型性能。
  • 不同数据领域之间的交互关系复杂,常常违反直觉,因此自动化方法(如 REGMIX)是必需的。
  • 数据混合的影响超越了 Scaling Laws(扩展法则),需要额外建模数据交互。

2. 相关工作

2.1 数据选择与数据混合

  • Token 级选择:基于 token 进行数据筛选(如 Lin et al., 2024)。
  • 样本级选择:选择单个训练样本(如 Thakkar et al., 2023)。
  • 分组级选择(Group-Level Selection):对数据集进行分组并调整混合比例(如 DoReMi)。

2.2 数据扩展法则(Scaling Laws)

  • 数据扩展法则探索数据量、质量和混合比例的关系,预测不同数据组合的影响。
  • 近期研究(如 Hoffmann et al., 2022; Ye et al., 2024)表明,不同数据集需要不同的扩展策略。
  • REGMIX 提供了一种直接优化目标指标的方式,而非依赖静态扩展法则。

3. RegMix 方法

3.1 方法概述

RegMix 主要包括以下 4 个步骤:

  • 训练小规模代理模型(proxy models):在不同的数据混合上训练小规模模型(如 1M 参数)。
  • 拟合回归模型:使用线性回归(Linear Regression)或 LightGBM 预测数据混合的性能。
  • 模拟并预测最优数据混合:在大规模模型训练前,利用回归模型搜索最优数据混合。
  • 大规模模型训练:在预测的最佳数据混合上进行大规模训练(如 1B 参数模型)。

3.2 小规模代理模型训练

  • 通过 Dirichlet 分布 采样不同的数据混合,使得训练数据具有广泛的多样性。
  • 训练 512 个 1M 参数的小规模模型,并在 1B tokens 上训练。
  • 计算这些模型的验证损失,用于训练回归模型。

3.3 回归模型

线性回归(Linear Regression):通过最小二乘法(OLS)拟合数据混合与验证损失之间的关系。

LightGBM

  • 通过梯度提升树(gradient-boosting tree,GBT)建模数据混合与性能之间的复杂关系。在回归的背景下,LightGBM 学习一组决策树来预测目标变量。
  • 在实验中表现 优于 线性回归,尤其是在大规模模型预测中。

3.4 预测与大规模模型训练

  • 通过回归模型在 1M 数据混合 上进行快速模拟。
  • 选择 前 100 个最优数据混合 进行加权平均,提升泛化能力。
  • 在最终的 1B 参数模型上训练 25B tokens,以验证方法的有效性。

4. 回归预测评估

4.1 实验设置

数据集:使用 The Pile 语料库的 17 个可用子集(如 Wikipedia、GitHub、CommonCrawl)。

模型规模

  • 小规模(1M 参数)→ 训练 512 个代理模型
  • 中等规模(60M 参数)→ 训练 256 个模型
  • 大规模(1B 参数)→ 训练 64 个模型

4.2 主要结果

LightGBM 预测性能更优,Spearman 相关系数(ρ)可达 99.53%

增加代理模型数量 比 增加训练 token 更有效。

5. 下游任务评估

5.1 数据混合影响

训练 64 个 1B 参数模型,比较不同数据混合对下游任务的影响:最大性能差异达到 14.6%(Lambada 任务)。这强调了研究最佳数据组合的重要性。

5.2 Web 语料比 Wikipedia 更优

Pile-CC(Web 语料)与下游任务性能相关性最高,优于 Wikipedia。Web 语料的话题和域多样性可能是关键因素。

5.3 REGMIX vs. 其他方法

REGMIX 超越了 DoReMi、PPL 和 Human 选择,在 7/14 个任务上表现最佳。

计算成本(FLOPs)仅为 DoReMi 的 10%,但性能相当或更优。

5.4 数据域交互的复杂性

传统认为数据混合的优化可以基于独立数据集的效果进行加权。然而,数据域之间存在复杂的相互作用,使得人工选择变得困难。

通过 线性回归系数分析,我们发现某些数据域(如 PhilPapers)对所有其他领域都有正向影响

数据域之间的影响并不符合直觉,例如:

  • GitHub 数据对 Stack Exchange 数据的影响并不明显。
  • Wikipedia 训练损失与下游任务的相关性较低。

结论:

  • 人工选择数据混合的策略可能会忽略关键的交互效应。
  • 自动化数据混合方法(如 REGMIX)能够捕捉这些复杂的交互关系,提高 LLM 训练效率。

5.5 数据混合的影响是否遵循扩展法则(Scaling Laws)

在许多研究中,扩展法则(Scaling Laws)被用于预测数据混合的影响。然而,我们的实验表明,数据混合的影响并非简单的 log-log 关系

扩展法则 vs. 真实数据

  • 某些领域(如 DM Mathematics)确实符合扩展法则,损失与数据比例呈线性关系。
  • 但大多数领域(如 Pile-CC)表现出复杂的非线性关系,难以通过传统扩展法则预测。

结论:

  • 扩展法则可能无法准确预测数据混合的影响,需要引入更复杂的建模方法。
  • REGMIX 通过回归建模整个数据混合空间,能更精确地优化数据比例。

5.6 REGMIX 在 100 个数据域上的扩展能力

为验证 REGMIX 的可扩展性,我们将数据混合从 17 个域扩展到 100 个域,并训练 1000 个小规模模型进行预测。

结论:

  • REGMIX 在 100 个数据域上依然能够准确预测最佳数据混合
  • LightGBM 的 Spearman 相关性达到了 99.53%,表明该方法能精准捕捉数据混合影响。

6. 结论

REGMIX 提供了一种高效且自动化的数据混合优化方法,通过训练小规模模型来预测大规模模型的最佳数据混合。实验验证了数据混合对下游任务的影响巨大,并且 Web 语料优于 Wikipedia。REGMIX 在计算成本远低于 DoReMi 的情况下,仍能匹配甚至超越其性能。


论文地址:https://arxiv.org/abs/2407.01492

项目页面:https://github.com/sail-sg/regmix

进 Q 学术交流群:922230617

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值