图神经网络(9)- GNNs的理论理解

目录

GNN如何很好的区分不同的图结构??

怎么设计表达能力最强的GNN模型???

常用GNN模型的表达能力怎么样呢?(区分不同图的能力)

设计表达能力最强的GNN模型——GIN

 GIN与WL graph kernel的关系

提升 GNN的能力


摘要:

GNN如何很好的区分不同的图结构??

常用GNN模型的表达能力(区分不同图的能力)

怎么设计表达能力最强的GNN模型???

GNN如何很好的区分不同的图结构??

在之前我们已经谈过了,GNN模型的GNN层都可以看作是由message和aggregation组成的。

 这个地方不懂,参考

图神经网络(6)-GNN1_山、、、的博客-CSDN博客图的特殊性、怎么引入GNN、介绍GCNhttps://blog.csdn.net/qq_44689178/article/details/123263686图神经网络(7)- GNN2_山、、、的博客-CSDN博客介绍GNN通用框架,从GCN到GraphSAGE,GAThttps://blog.csdn.net/qq_44689178/article/details/123334408?spm=1001.2014.3001.5501

图神经网络就是通过message和aggregation操作,从 图的结构输入的节点特征学习embeddings。当然GNN中图的结构相对而言比较重要,如果只有节点特征就是普通的NN。

当我们假设,节点特征都相同时,GNN如何学习区分呢?

考虑节点的本地邻居结构!   1.各个节点的度不同,2.各个节点的邻居的度不同。

GNN能捕获本地邻居结构的关键就是计算图

重要结论表达能力最强的GNN能区分不同计算图。

那么计算图相同是个什么情况呢?

计算图相同,他区分不了。这个地方借用图论里面的一个概念——同构图。只要在图里面有局部同构的情况,这个局部同构点他就区分不了!——计算图相同。 也许也不需要区分,这部分的节点就是“等同”的。下图中,节点1和节点2的计算图就是相同的。

所以说,GNN的目标就是计算图不同,得到的embeddings就应该不同。

怎么设计表达能力最强的GNN模型???

在谈如何设计最强GNN之前,引入一个概念单射——不同的输入映射到不同的输出(输入不同则输出不同)。

从上一小节知道,最强GNN能区分不同的计算图,而GNN就是把计算图作为输入。那么说最强GNN只要能通过计算图单射得到不同的节点嵌入就行!

从计算图来看,节点embeddings就是递归的从叶子节点往根节点提取特征。如果每一步GNN的聚集可以完全保留邻居信息(叶子节点信息),那么节点嵌入就可以区分不同的计算图(计算图也可以称为根子树)。也就是说,最强GNN可以区分不同的计算图结构,只要每一步都使用单射的邻居聚集函数

常用GNN模型的表达能力怎么样呢?(区分不同图的能力)

从上一节知道,GNNs的表达能力强弱取决于与聚集函数,也就是聚集函数的表达能力越强,那么GNN的表达能力也就越强

把聚焦操作抽象为多集合上的函数(ppt换了一个表示方式)

接下来,我们分析GCN和GraphSAGE的聚集函数。

 其实,很容易就能看出来,求均值和求最大值肯定不是单射,也就是会有它区分不了的情况。因此GCN和GraphSAGE不是最强GNN.

下面举例说明,

 

设计表达能力最强的GNN模型——GIN

目标:设计最强GNN(在所有的信息传递GNN中)

策略:设计单射的邻居聚集函数——设计一个NN来实现这个聚集函数

根据2019年的这篇论文,NN版的单射函数公式如下:

 论文中的直觉证明:

 可以用MLP来实现,只要一个维度为100到500维度的隐藏层的MLP效果就非常好!!

 上面提到的这个最强GNN已经实现了,被称作 Graph Ismorphism Network(GIN)。

GIN的邻居聚集函数是单射的,没有失败的例子,就是最强的GNN。

 GIN与WL graph kernel的关系

下面再介绍一下,GIN与WL graph kernel的关系。

WL graph kernel 是传统获得图级别特征的方法。参考**********************

其实GIN可以看作是神经网络版本的WL graph kernel。

WL graph kernel 公式如下。其中HASH就是一个单射函数。

 GIN就是把HASH函数用MLP实现

 在K步GIN迭代后 ,c(v)就聚集了K-hop的邻居结构信息。这一点与WL graph kernel也一样。

对比WL graph kernel 与GIN

GIN与WL graph kernel的表达能力是相同的,而WL graph kernel可以区分绝大多数真实世界的图(来自 Cai et al。1992 论文的证明),因此GIN也可以区分绝大多数真实世界的图!!

补充一句,GIN 使用的是element-wise的求和池化操作。

池化区分不同图能力:sum  >>  mean  >>  max

提升 GNN的能力

没看论文的内容,纯属猜测——强化节点特征!!参考链接中的图增强!!

图神经网络(8)- GNN-application_山、、、的博客-CSDN博客图的特征增强,图的结构增强,GNN训练过程中的处理和数据集的划分https://blog.csdn.net/qq_44689178/article/details/123404711

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值