HDU - 3944 DP?(预处理+Lucas定理)

传送门


首先不难发现只有两种走法是最划算的:
在这里插入图片描述

  • 对于第一种先直走后斜着的走法,显然是如下的一个公式:

    C ( n , k ) + C ( n − 1 , k − 1 ) + . . . + C ( n − k + 1 , 1 ) + C ( n − k , 0 ) + n − k C(n,k)+C(n-1,k-1)+...+C(n-k+1,1)+C(n-k,0)+n-k C(n,k)+C(n1,k1)+...+C(nk+1,1)+C(nk,0)+nk

    根据公式 C ( n , k ) = C ( n − 1 , k ) + C ( n − 1 , k − 1 ) C(n,k)=C(n-1,k)+C(n-1,k-1) C(n,k)=C(n1,k)+C(n1,k1)

    我们将最后一项 C ( n − k , 0 ) C(n-k,0) C(nk,0)换成 C ( n − k + 1 , 0 ) C(n-k+1,0) C(nk+1,0),显然可以和倒数第二项合并得到 C ( n − k + 2 , 1 ) C(n-k+2,1) C(nk+2,1),那么又可以和倒数第三项合并…,最后得到一个计算公式 C ( n + 1 , k ) + n − k C(n+1,k)+n-k C(n+1,k)+nk

  • 对于第二种先斜着走后直走的走法,显然是如下的公式:

    C ( n , k ) + C ( n − 1 , k ) + . . . + C ( k , k ) + k C(n,k)+C(n-1,k)+...+C(k,k)+k C(n,k)+C(n1,k)+...+C(k,k)+k

    同理最后得到的是一个如下的公式: C ( n + 1 , k + 1 ) + k C(n+1,k+1)+k C(n+1,k+1)+k

观察不难得知当 k ≤ 2 n k\leq \frac{2}{n} kn2时,选择第一种方案更优;否则选择第二种方案更优

当我们直接计算时,发现实际的复杂度可能最坏为 T ∗ ( l o g 2 n ) 2 T*(log_2n)^2 T(log2n)2,因此就超时了。观察可知卢卡斯定理每次计算的组合数的   n , m   ~n,m~  n,m 都小于   p   ~p~  p ,那么可以预处理保存   p   ~p~  p 的范围内的阶乘对   p   ~p~  p 取模的结果,此时的时间复杂度为 O ( T ∗ l o g n ) O(T*logn) O(Tlogn)

//
// Created by Happig on 2020/8/20
//
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>
using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 1e9 + 7;
const int maxn = 1e4 + 10;

vector<int> prime;
bool is_prime[maxn];
unordered_map<int,int> mp;
ll fac[maxn][1300];
int num;

void getPrime(){  //欧拉筛求素数
    int m=sqrt(maxn+0.5);
    memset(is_prime,1,sizeof is_prime);
    is_prime[0]=is_prime[1]=0;
    for(int i=2;i<maxn;i++){
        if(is_prime[i]) prime.push_back(i);
        for(int j=0;j<prime.size() && 1LL*i*prime[j]<maxn;j++){
            is_prime[i*prime[j]]=0;
            if(i%prime[j]==0) break;
        }
    }
    //cout<<prime.size()<<endl;
    mp.clear(),num=0;
    for(auto i: prime) mp[i]=++num;
}

ll qkp(ll x,ll n,ll p){
    ll ans=1;
    while(n){
        if(n&1) ans=ans*x%p;
        x=x*x%p;
        n>>=1;
    }
    return ans;
}

ll inv(ll x,ll p){  //求逆元
    return qkp(x,p-2,p);
}

ll cal(ll n,ll m,ll p){
    if(m>n) return 0;
    return fac[n][mp[p]]*inv(fac[m][mp[p]],p)%p*inv(fac[n-m][mp[p]],p)%p;
}

ll lucas(ll n,ll m,ll p){
    if(!m) return 1;
    return cal(n%p,m%p,p)*lucas(n/p,m/p,p)%p;
}

void init(){
    for(auto p: prime){
        int j=mp[p];
        fac[0][j]=1;
        for(int i=1;i<maxn;i++)
            fac[i][j]=fac[i-1][j]*i%p;
    }
}

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    //ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int kase=0;
    ll n,m,p;
    getPrime();
    init();
    while(scanf("%lld%lld%lld",&n,&m,&p)!=EOF){
        if(m<=n/2) printf("Case #%d: %lld\n",++kase,(lucas(n+1,m,p)+(n-m+p)%p)%p);
        else printf("Case #%d: %lld\n",++kase,(lucas(n+1,m+1,p)+m)%p);
    }
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值