施罗德数

问题引入

施罗德数(又称超级卡特兰数)用来描述表格中从 ( 0 , 0 ) (0,0) (0,0) ( n , n ) (n,n) (n,n)的格路中,只能使用 ( 1 , 0 ) , ( 0 , 1 ) , ( 1 , 1 ) (1,0),(0,1),(1,1) (1,0),(0,1),(1,1)三种移动方式,且始终在对角线下方而不能超过对角线的路径数

(图片来自百度百科)
在这里插入图片描述

通项公式

施罗德数前几项为 1 , 2 , 6 , 22 , 90 , 394... 1,2,6,22,90,394... 1,2,6,22,90,394...

递推公式为 F n = F n − 1 + ∑ i = 0 n − 1 F i ∗ F n − i − 1 F_n=F_{n-1}+\sum_{i=0}^{n-1}F_i*F_{n-i-1} Fn=Fn1+i=0n1FiFni1

计算

通过通项公式计算的时间复杂度为 O ( n 2 ) O(n^2) O(n2),显然不能接受,这时需要引入一个新的递推序列:

1 , 1 , 3 , 11 , 45 , 197 , . . . 1,1,3,11,45,197,... 1,1,3,11,45,197,...

不难发现该序列和施罗德数除了第一项外,只需要乘以二就能得到施罗德数,该序列的递推公式为:

( n + 1 ) F n = ( 6 n − 3 ) ∗ F n − 1 − ( n − 2 ) ∗ F n − 2 (n+1)F_n=(6n-3)*F_{n-1}-(n-2)*F_{n-2} (n+1)Fn=(6n3)Fn1(n2)Fn2

递推代码
ll f[maxn], g[maxn];

ll qkp(ll x, ll n, ll p) {
    ll ans = 1;
    x %= p;
    while (n) {
        if (n & 1) ans = ans * x % Mod;
        x = x * x % Mod;
        n >>= 1;
    }
    return ans;
}

ll inv(ll a, ll p) {
    return qkp(a, p - 2, p);
}

//(n+1)f[n]=(6n-3)*f[n-1]-(n-2)*f[n-2]
void init(int n, ll p) {
    f[0] = f[1] = 1;
    g[0] = 1, g[1] = 2;
    for (int i = 2; i <= n; i++) {
        f[i] = ((6LL * i - 3) * f[i - 1] - (1LL * i - 2) * f[i - 2] + p) % p * inv(i + 1, p) % p;
        g[i] = f[i] * 2 % p;
    }
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值