洛谷 P1829 [国家集训队]Crash的数字表格(莫比乌斯反演)

传送门


题目大意

∑ i = 1 n ∑ j = 1 m l c m ( i , j ) \sum_{i=1}^n\sum_{j=1}^mlcm(i,j) i=1nj=1mlcm(i,j)

常规解法

下面表述默认 n ≤ m n \leq m nm

f ( n , m ) = ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) = ∑ i = 1 n ∑ j = 1 m i j g c d ( i , j ) f(n,m)=\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)=\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)} f(n,m)=i=1nj=1mlcm(i,j)=i=1nj=1mgcd(i,j)ij

有一个常用的技巧,首先枚举 g c d ( i , j ) gcd(i,j) gcd(i,j) f ( n , m ) = ∑ d = 1 n ∑ i n ∑ j m i j d [ g c d ( i , j ) = d ] f(n,m)=\sum_{d=1}^{n}\sum_i^n\sum_j^m\frac{ij}{d}[gcd(i,j)=d] f(n,m)=d=1ninjmdij[gcd(i,j)=d]

按照套路, [ g c d ( i , j ) = d ] ⇔ [ g c d ( ⌊ i d ⌋ , ⌊ j d ⌋ ) = 1 ] [gcd(i,j)=d] \Leftrightarrow [gcd(\lfloor \frac{i}{d} \rfloor,\lfloor \frac{j}{d} \rfloor)=1] [gcd(i,j)=d][gcd(di,dj)=1],从而转化为内层的两个求和同除以 d d d,又因为外面乘上了 i j ij ij,那么需要再多乘上 d 2 d^2 d2,得: f ( n , m ) = ∑ d = 1 n ∑ i ⌊ n d ⌋ ∑ j ⌊ m d ⌋ i ∗ j ∗ d ∗ [ g c d ( i , j ) = 1 ] f(n,m)=\sum_{d=1}^{n}\sum_i^{\lfloor \frac{n}{d} \rfloor}\sum_j^{\lfloor \frac{m}{d} \rfloor}i*j*d*[gcd(i,j)=1] f(n,m)=d=1nidnjdmijd[gcd(i,j)=1]

然后对于 [ g c d ( i , j ) = 1 ] [gcd(i,j)=1] [gcd(i,j)=1],依然可以利用莫比乌斯变换替换: f ( n , m ) = ∑ d = 1 n ∑ i ⌊ n d ⌋ ∑ j ⌊ m d ⌋ i ∗ j ∗ d ∑ k ∣ ( i , j ) μ ( k ) f(n,m)=\sum_{d=1}^{n}\sum_i^{\lfloor \frac{n}{d} \rfloor}\sum_j^{\lfloor \frac{m}{d} \rfloor}i*j*d\sum_{k|(i,j)}\mu(k) f(n,m)=d=1nidnjdmijdk(i,j)μ(k)

枚举 k k k,类似上面那样令 i = x ∗ k , j = y ∗ k i=x*k,j=y*k i=xk,j=yk f ( n , m ) = ∑ d = 1 n d ∑ k = 1 ⌊ n d ⌋ μ ( k ) ∗ k 2 ∑ x = 1 ⌊ n d k ⌋ x ∑ y = 1 ⌊ m d k ⌋ y f(n,m)=\sum_{d=1}^{n}d\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor }\mu(k)*k^2\sum_{x=1}^{\lfloor \frac{n}{dk} \rfloor}x\sum_{y=1}^{\lfloor \frac{m}{dk} \rfloor}y f(n,m)=d=1ndk=1dnμ(k)k2x=1dknxy=1dkmy

两次数论分块时间复杂度 O ( n ) O(n) O(n) ∑ d n d , ∑ i n i , ∑ j m j \sum_d^nd,\sum_i^ni,\sum_j^mj dnd,ini,jmj都可以使用等差数列通项公式

这里的两次数论分块看了很久,一定要细细体会

代码



//
// Created by Happig on 2020/9/24
//
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>

using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define ENDL "\n"
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 20101009;
const int maxn = 1e7 + 10;

vector<int> prime;
int mu[maxn];
ll sum[maxn];
bitset<maxn> vis;

void init() {
    vis.reset(), prime.clear();
    mu[1] = sum[1] = 1;
    for (int i = 2; i < maxn; i++) {
        if (!vis[i]) {
            prime.push_back(i);
            mu[i] = -1;
        }
        for (int j = 0; j < prime.size() && i * prime[j] < maxn; j++) {
            vis[i * prime[j]] = 1;
            if (i % prime[j]) {
                mu[i * prime[j]] = -mu[i];
            } else {
                mu[i * prime[j]] = 0;
                break;
            }
        }
        sum[i] = (sum[i - 1] + (1LL * mu[i] * i * i) % Mod) % Mod;
    }
}

ll g(ll x, ll y) {
    return (x * (1 + x) / 2) % Mod * ((y * (1 + y) / 2) % Mod) % Mod;
}

ll cal(ll n, ll m) {
    ll up = min(n, m), ans = 0;
    for (ll l = 1, r; l <= up; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        if (r > up) r = up;
        ans += (sum[r] - sum[l - 1] + Mod) % Mod * g(n / l, m / l) % Mod;
    }
    return ans;
}

ll solve(ll n, ll m) {
    ll up = min(n, m), ans = 0;
    for (ll l = 1, r; l <= up; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        if (r > up) r = up;
        ans += (r - l + 1) * (l + r) / 2 % Mod * cal(n / l, m / l) % Mod;
        ans %= Mod;
    }
    return ans;
}

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, m;
    init();
    cin >> n >> m;
    cout << solve(n, m) << ENDL;
    return 0;
}
继续优化

上式还可以继续化简优化:

T = d k , f ( x ) = ∑ i = 1 x i T=dk,f(x)=\sum_{i=1}^xi T=dk,f(x)=i=1xi,那么可以得到: f ( n , m ) = ∑ d = 1 n d ∑ k = 1 ⌊ n d ⌋ μ ( k ) ∗ k 2 f ( ⌊ n T ⌋ ) f ( ⌊ m T ⌋ ) f(n,m)=\sum_{d=1}^{n}d\sum_{k=1}^{\lfloor \frac{n}{d} \rfloor }\mu(k)*k^2f(\lfloor \frac{n}{T} \rfloor)f(\lfloor \frac{m}{T} \rfloor) f(n,m)=d=1ndk=1dnμ(k)k2f(Tn)f(Tm)

然后仍使用上面枚举 g c d ( i , j ) gcd(i,j) gcd(i,j)的技巧,枚举 T T T(这里比较难懂,因为 T T T d d d的倍数,然后 T T T可以取遍 [ 1 , n ] [1,n] [1,n],故这样转化):
f ( n , m ) = ∑ T = 1 n f ( ⌊ n T ⌋ ) f ( ⌊ m T ⌋ ) ∑ d ∣ T d ∗ μ ( T d ) ∗ ( T d ) 2                = ∑ T = 1 n f ( ⌊ n T ⌋ ) f ( ⌊ m T ⌋ ) ∑ d ∣ T d ∗ μ ( d ) ∗ T f(n,m)=\sum_{T=1}^{n} f(\lfloor \frac{n}{T} \rfloor)f(\lfloor \frac{m}{T} \rfloor)\sum_{d|T}d*\mu(\frac{T}{d})*(\frac{T}{d})^2 \\ ~~~~~~~~~~~~~~ = \sum_{T=1}^{n} f(\lfloor \frac{n}{T} \rfloor)f(\lfloor \frac{m}{T} \rfloor)\sum_{d|T}d*\mu(d)*T f(n,m)=T=1nf(Tn)f(Tm)dTdμ(dT)(dT)2              =T=1nf(Tn)f(Tm)dTdμ(d)T

上面的 ∑ d ∣ T d ∗ μ ( T d ) ∗ ( T d ) 2 ⇔ ∑ d ∣ T d ∗ μ ( d ) ∗ T \sum_{d|T}d*\mu(\frac{T}{d})*(\frac{T}{d})^2 \Leftrightarrow \sum_{d|T}d*\mu(d)*T dTdμ(dT)(dT)2dTdμ(d)T比较巧妙,原理是:

  • d d d取遍 T T T的所有因数时,因为 d ∣ T d|T dT,那么 μ ( T d ) = μ ( d ) \mu(\frac{T}{d})=\mu(d) μ(dT)=μ(d)
  • d d d取遍 T T T的所有因数时,那么 d ∗ ( T d ) 2 = T 2 d = T ∗ T d = T ∗ d d*(\frac{T}{d})^2=\frac{T^2}{d}=T*\frac{T}{d}=T*d d(dT)2=dT2=TdT=Td

F ( T ) = ∑ d ∣ T d ∗ μ ( d ) F(T)=\sum_{d|T}d*\mu(d) F(T)=dTdμ(d),考虑 a ⊥ b a\bot b ab F ( a ) = ∑ d ∣ a d ∗ μ ( d ) , F ( b ) = ∑ d ∣ b d ∗ μ ( d ) F(a)=\sum_{d|a}d*\mu(d),F(b)=\sum_{d|b}d*\mu(d) F(a)=dadμ(d),F(b)=dbdμ(d)

在我们枚举 d d d时,它既可以是 a a a的约数也可以是 b b b的约数,根据唯一分解定理不难发现 F ( a b ) = F ( a ) ∗ F ( b ) F(ab)=F(a)*F(b) F(ab)=F(a)F(b),故 F ( n ) F(n) F(n)是一个积性函数,可以线性筛。可以知道 F ( 1 ) = 1 , F ( p ) = 1 − p , p ∈ p r i m e s F(1)=1,F(p)=1-p,p\in primes F(1)=1,F(p)=1p,pprimes;考虑 a % p = = 0 a\%p==0 a%p==0的情况,那么 a ∗ p a*p ap中分解出的因数含 p α + β p^{\alpha+\beta} pα+β项的值一定为 0 0 0,因为其幂次一定大于 1 1 1,而大于 1 1 1之后莫比乌斯函数的值即为 0 0 0,因此可以得出此时 F ( a ∗ p ) = F ( a ) , a % = = 0 F(a*p)=F(a),a\%==0 F(ap)=F(a),a%==0,现在就可以欧拉筛预处理出 F ( n ) F(n) F(n)

此时再观察公式 ∑ T = 1 n f ( ⌊ n T ⌋ ) f ( ⌊ m T ⌋ ) F ( T ) ∗ T \sum_{T=1}^{n} f(\lfloor \frac{n}{T} \rfloor)f(\lfloor \frac{m}{T} \rfloor)F(T)*T T=1nf(Tn)f(Tm)F(T)T,那么 F ( T ) ∗ T F(T)*T F(T)T也可以作为前缀和预处理出来了,那么算法时间复杂度优化了很多

代码

//
// Created by Happig on 2020/9/24
//
#include <bits/stdc++.h>
#include <unordered_map>
#include <unordered_set>

using namespace std;
#define fi first
#define se second
#define pb push_back
#define ins insert
#define Vector Point
#define ENDL "\n"
#define lowbit(x) (x&(-x))
#define mkp(x, y) make_pair(x,y)
#define mem(a, x) memset(a,x,sizeof a);
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const double dinf = 1e300;
const ll INF = 1e18;
const int Mod = 20101009;
const int maxn = 1e7 + 10;

ll sum[maxn], F[maxn];
bitset<maxn> vis;
vector<int> prime;

void init() {
    sum[1] = F[1] = 1;
    vis.reset(), prime.clear();
    for (int i = 2; i < maxn; i++) {
        if (!vis[i]) {
            prime.push_back(i);
            F[i] = (1 - i + Mod);
        }
        for (int j = 0; j < prime.size() && i * prime[j] < maxn; j++) {
            vis[i * prime[j]] = 1;
            if (i % prime[j]) {
                F[i * prime[j]] = (F[i] * F[prime[j]]) % Mod;
            } else {
                F[i * prime[j]] = F[i];
                break;
            }
        }
        sum[i] = (sum[i - 1] + F[i] * i % Mod) % Mod;
    }
}

ll f(ll x) {
    return x * (x + 1) / 2 % Mod;
}

ll solve(ll n, ll m) {
    ll up = min(n, m), ans = 0;
    for (ll l = 1, r; l <= up; l = r + 1) {
        r = min(n / (n / l), m / (m / l));
        if (r > up) r = up;
        ans += (sum[r] - sum[l - 1] + Mod) % Mod * f(n / l) % Mod * f(m / l) % Mod;
        ans %= Mod;
    }
    return ans;
}

int main() {
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, m;
    init();
    cin >> n >> m;
    cout << solve(n, m) << ENDL;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值