【AI学习指南】九、PaddlePaddle自然语言处理-PaddleNLP SKEP情感分析定制化训练(万字长文附代码)

本教程详细介绍了如何使用PaddlePaddle的PaddleNLP库,基于SKEP模型进行情感分析的定制化训练。内容涵盖加载预训练模型、数据集准备、数据处理、模型训练、保存与预测,提供了完整的代码示例。
摘要由CSDN通过智能技术生成

目录

加载预训练模型到指定位置

加载分词器

准备数据集

train.tsv 文件内容示例:

dev.tsv 文件内容示例:

加载本地数据集

读取文件

数据预处理函数

数据处理

设置设备

设置学习率调度器

优化器和损失函数

评估模型

训练模型

保存模型

训练日志

预测函数

加载模型进行预测

完整代码

其他

处理序列分类任务的模型的区别


利用自己的数据训练/微调模型

参考PaddleNLP SKEP情感分析训练示例,完成数据准备和模型训练。

 

加载预训练模型到指定位置

指定了模型的缓存目录cache_dir,从远程服务器加载预训练模型时,PaddleNLP会首先将模型文件下载到这个缓存目录,以便后续可以更快地加载模型,而无需每次都从远程服务器下载。

from paddlenlp.transformers import SkepForSequenceClassification, SkepTokenizer

# 指定模型名称和缓存目录
model_name = "skep_ern
好的,你想要了解如何使用PaddleNLP进行商品评论情感分析。首先,你需要准备一个数据集,其中包含商品评论和对应的情感标签(如正面、负面或中性)。可以从公开数据集中获得此类数据集,例如IMDB电影评论数据集或Amazon商品评论数据集。 接下来,你需要安装PaddleNLP库,可以使用以下命令进行安装: ``` pip install paddlenlp ``` 然后,你可以使用PaddleNLP中的预训练模型和数据处理工具来训练和评估情感分析模型。以下是一个示例代码,它使用了PaddleNLP中的情感分析模型和数据集: ```python import paddle import paddle.nn.functional as F from paddlenlp.datasets import load_dataset from paddlenlp.transformers import SkepForSequenceClassification, SkepTokenizer # 加载数据集 train_ds, dev_ds = load_dataset('chnsenticorp', splits=('train', 'dev')) # 定义模型和tokenizer model = SkepForSequenceClassification.from_pretrained('skep_ernie_1.0_large_ch', num_classes=3) tokenizer = SkepTokenizer.from_pretrained('skep_ernie_1.0_large_ch') # 定义数据处理函数 def convert_example(example, tokenizer, max_seq_length=512): # 将原始数据处理成 BertModel 接受的格式 if isinstance(example, str): example = {'text': example} encoded_inputs = tokenizer( text=example['text'], max_seq_len=max_seq_length) input_ids = encoded_inputs['input_ids'] token_type_ids = encoded_inputs['token_type_ids'] if 'labels' in example: label = example['labels'] return input_ids, token_type_ids, label else: return input_ids, token_type_ids # 定义数据加载器 batch_size = 32 train_loader = paddle.io.DataLoader( dataset=train_ds.map(lambda x: convert_example(x, tokenizer)), batch_size=batch_size, shuffle=True) dev_loader = paddle.io.DataLoader( dataset=dev_ds.map(lambda x: convert_example(x, tokenizer)), batch_size=batch_size) # 定义优器和损失函数 optimizer = paddle.optimizer.AdamW(learning_rate=5e-5, parameters=model.parameters()) criterion = paddle.nn.CrossEntropyLoss() # 训练模型 epochs = 3 steps = 0 for epoch in range(1, epochs + 1): for batch in train_loader: input_ids, token_type_ids, labels = batch logits = model(input_ids, token_type_ids) loss = criterion(logits, labels) loss.backward() optimizer.step() optimizer.clear_grad() steps += 1 if steps % 10 == 0: print(f'Epoch [{epoch}/{epochs}], Step [{steps}], Loss: {loss.numpy()}') # 在验证集上评估模型 model.eval() correct = 0 total = 0 for batch in dev_loader: input_ids, token_type_ids, labels = batch logits = model(input_ids, token_type_ids) preds = F.softmax(logits, axis=1).argmax(axis=1) correct += (preds.numpy() == labels.numpy()).sum() total += len(labels) acc = correct / total print(f'Epoch [{epoch}/{epochs}], Val Acc: {acc}') model.train() ``` 该代码将使用SKEP模型进行训练和评估,并使用ChnSentiCorp数据集进行训练和验证。你可以使用类似的方法将自己的数据集和模型替换到这个示例中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瑶山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值