1、协同过滤要解决的问题
协同过滤算法主要用于推荐系统,推荐系统是信息过载所采用的措施,面对海量的数据信息,从中快速推荐出符合用户特点的物品。一些人的“选择恐惧症”、没有明确需求的人。
解决如何从大量信息中找到自己感兴趣的信息。
解决如何让自己生产的信息脱颖而出,受到大众的喜爱。
就相当于物以类聚,人以群分。
用户ID、物品ID、偏好值
偏好值就是用户对物品的喜爱程度,推荐系统所做的事就是根据这些数据为用户推荐他还没有见过的物品,并且猜测这个物品用户喜欢的概率比较大。
用户ID和物品ID一般通过系统的业务数据库就可以获得,偏好值的采集一般会有很多办法,比如评分、投票、转发、保存书签、页面停留时间等等,然后系统根据用户的这些行为流水,采取减噪、归一化、加权等方法综合给出偏好值。一般不同的业务系统给出偏好值的计算方法不一样。
协同是什么意思