Spark模拟实现对RDD数据流的处理

6 篇文章 0 订阅

idea端

模拟了预先将10个(1~10)的数组加入队列流,再进行处理

package phasetest

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}


object RddQu {
  def main(args: Array[String]): Unit = {
//    代理对象
    val sparkConf = new SparkConf().setAppName("TestRDDQueue").setMaster("local[2]")
//    StreamingContext资源调度对象
    val ssc = new StreamingContext(sparkConf, Seconds(2))
//    生成rdd队列(规定了消息的类型)
    val rddQueue =new scala.collection.mutable.SynchronizedQueue[RDD[Int]]()
//    将队列放入输入流中,挂接
    val queueStream = ssc.queueStream(rddQueue)
//    处理队列流数据
    val mappedStream = queueStream.map(r => (r % 10, 1))
    val reducedStream = mappedStream.reduceByKey(_ + _)
//    输出到屏幕
    reducedStream.print()
//    开启
    ssc.start()
//    循环发送
    for (i <- 1 to 10){
//      将1-100的数组传入RDD序列(前面规定了消息的类型)
      rddQueue += ssc.sparkContext.makeRDD(1 to 100)
      Thread.sleep(1000)
    }
    ssc.stop()

  }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值