神经网络与深度学习学习笔记4


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。

一、数据的特征表示

在这里插入图片描述

二、传统的特征学习

传统的特征学习一般是通过人为地设计一些准则,然后根据这些准则来选取有效的特征,具体又可以分为两种:特征选择和特征抽取.

1.特征选择

特征选择(Feature Selection)是选取原始特征集合的一个有效子集,使得基于这个特征子集训练出来的模型准确率最高.简单地说,特征选择就是保留有用特征,移除冗余或无关的特征
在这里插入图片描述
添加该轮最优的特征,称为前向搜索(Forward Search);或者从原始特征集合开始,每次删除最无用的特征,称为反向搜索(Backward Search).

子集搜索方法可以分为过滤式方法和包裹式方法:

  1. 过滤式方法(Filter Method)是不依赖具体机器学习模型的特征选择方法.每次增加最有信息量的特征,或删除最没有信息量的特征[Hall, 1999].特征的信息量可以通过信息增益(Information Gain)来衡量,即引入特征后条件分布𝑝𝜃(𝑦|𝒙)的不确定性(熵)的减少程度.
  2. 包裹式方法(Wrapper Method)是使用后续机器学习模型的准确率作为评价来选择一个特征子集的方法.每次增加对后续机器学习模型最有用的特征,或删除对后续机器学习任务最无用的特征.这种方法是将机器学习模型包裹到特征选择过程的内部
    在这里插入图片描述

2.特征提取

在这里插入图片描述
在这里插入图片描述

三、深度学习方法

传统的特征抽取一般是和预测模型的学习分离的.我们会先通过主成分分析或线性判别分析等方法抽取出有效的特征,然后再基于这些特征来训练一个具体的机器学习模型.如果我们将特征的表示学习和机器学习的预测学习有机地统一到一个模型中,建立一个端到端的学习算法,就可以有效地避免它们之间准则的不一致性.这种表示学习方法称为深度学习(Deep Learning,DL). 是如何评价表示学习对最终系统输出结果的贡献或影响,即贡献度分配问题.目前比较有效的模型是神经网络,即将最后的输出层作为预测学习,其他层作为表示学习


总结

特征选择和特征抽取的优点是可以用较少的特征来表示原始特征中的大部分相关信息,去掉噪声信息,并进而提高计算效率和减小维度灾难(Curse of Dimensionality).对于很多没有正则化的模型,特征选择和特征抽取非常必要. 经过特征选择或特征抽取后,特征的数量一般会减少,因此特征选择和特征抽取也经常称为维数约减或降维(Dimension Reduction)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值