Federated Learning for Face Recognition

本文探讨了联邦学习在人脸识别模型训练中的应用策略。为解决隐私问题,提出了人脸数据标注、数据管理、模型评估及更新缓冲等策略,确保模型在不侵犯用户隐私的前提下达到预期性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


摘要

随着深度学习的快速发展,人脸识别准确率显着提高。然而,训练人脸识别模型需要将私人数据收集到中央服务器,以获得所需领域的高性能。由于联邦学习是一种在不向服务器收集数据的情况下训练模型的技术,因此它是一种合适的架构,可以使用个人智能手机中保存的隐私敏感面部图像来训练面部识别模型。本研究提出了将联邦学习应用于人脸识别模型训练的策略。


一、介绍

为了训练人脸识别模型,需要通过收集来自同一域的数据来构建训练数据集,即输入的分布。数据集构建的第一个选项是使用开放式面部数据集。网上有很多人脸数据集,每个数据集的数据量也足够大。因此,这些数据集可用于训练人脸识别模型。但是,训练模型的预期性能受限于训练数据集域中的面部图像。

不幸的是,不太可能找到所需域中的开放数据集。

构建训练数据集的另一种方法是直接将用户数据收集到服务器。在此数据集上训练的模型将能够达到预期的性能。

然而,在人脸识别模型的情况下,用户所需的数据将是隐私的人脸照片。这不仅需要用户同意收集,还存在个人信息泄露的潜在危险。潜在的危险是致命的,因为面部是不容易更改的重要个人信息之一。

因此,人脸识别模型应该在代表单个人的所有分布式数据上表现出良好的性能。此外,人脸识别模型应该也适用于新添加的身份。识别新添加的人是一项不同的任务,因为与其他人相比,他的面部数据集遵循完全不同的分布。换句话说,人脸识别中的任务数量会随着时间的推移而增加。这些属性显示出与持续学习的相似性,我们将它们命名为“连续”。这些连续属性与联邦学习的其他应用(例如下一个词预测)不同。在本文中,我们提出了一些关于正数据标记、数据管理、更新模型评估和考虑人脸识别连续特性的训练的策略。

二、联合学习策略

在这里插入图片描述

1.人脸数据标注策略

当人脸数据不断产生时,我们会标记这些数据是否对应于设备的所有者。

换句话说,每个数据都是正的或负的。

由于我们使用 ArcFace 损失函数,它只需要带有正标签的数据。我们提出了一种策略,可以根据特定标准有效地标记人脸数据。在一定时间内,根据fps的不同,存在着大量的人脸数据。如果超过一半的人脸数据被标记为正,我们得出结论,其他标记为负的数据也是正的。

2.数据管理策略

引言中提到,单个身份在一段时间内不断获得大量的人脸数据。由于所有这些人脸数据都对应相同的身份,我们希望人脸识别模型对所有数据都表现出一致的高性能。通过标准的训练方式,人脸识别模型往往会在最近的数据上表现出更好的表现,这种趋势被称为“灾难性遗忘”。为了防止这种情况,过去的数据需要参与培训。然而,由于移动设备的内存限制,不可能存储过去的所有数据,尤其是人脸图像。此外,移动设备的计算能力无法承受使用过去收集的所有数据进行训练的工作量。因此,我们提出了一种有效提取重要数据的策略。 ArcFace 模型返回表示人脸图像数据的高维(MobileFaceNets [6] 为 128D)向量。在这些向量中,只会保留一组最大化距离的少数向量,而其他向量将被删除。

3.模型评估策略

当从聚合创建新的全局模型时,并不一定意味着它的性能与以前的版本相比有所提高。因此,我们需要一个测试数据集来评估更新后的全局模型的性能。但是,由于面部数据是私有的,我们无法将用户数据直接收集到服务器。为了解决这个困难,我们随机将设备的角色以一定的比例(例如 8:2)分配给训练和评估。假设人口规模很大,20% 的随机样本可以在统计上代表整个人口。在模型更新聚合后,具有评估角色的设备接收全局模型的原始版本和更新版本,并根据本地数据产生模型的准确性。综合评估结果用于接受或拒绝全局模型的替换。如果更新的模型连续下降了几个轮(例如 50 轮),全局模型将回滚到具有最佳精度的最新全局模型。

4.更新缓冲策略

希望让尽可能多的设备在每一轮中做出贡献。传统联邦学习过程的每一轮都从选择可用设备开始。这只会选择当时可用的设备,很难鼓励更多的设备为这一轮做出贡献。为了改善这一点,我们建议使用缓冲区让设备在可用时进行训练。例如,在设备完成第一次训练后,它可能会积累更多的面部数据。通过我们的缓冲策略,设备可以在满足训练条件时使用新数据重新训练模型。缓冲区可以存储和管理所有从设备不定期发送的 ArcFace 模型的权重更新。因此,该策略允许尽可能多的设备参与每一轮。

上述相关工作中讨论的联邦学习往往由服务器主导和控制。通过应用更新缓冲区策略,我们让客户端设备积极参与联邦学习过程并启用异步协作学习,如图 1 所示


总结

本文提出了将联邦学习应用于人脸识别模型训练的策略。联邦学习允许在确保用户隐私的同时训练人脸识别模型以专门用于服务领域。据我们所知,这是第一份讨论考虑人脸识别连续特性的联邦学习过程的出版物。

### 安装 OpenSIPS 2.4.3 的详细步骤 #### 准备工作 为了确保顺利安装 OpenSIPS,在开始之前需确认系统已更新至最新状态。 ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装依赖包 在编译安装 OpenSIPS 前,需要先安装一些必要的开发工具和库文件: ```bash sudo apt-essential libmysqlclient-dev libncurses5-dev git-core pkg-config autoconf automake bison flex openssl libssl-dev uuid-dev libtool zlib1g-dev linux-libc-dev gawk debhelper intltool sqlite3 libsqlite3-dev mariadb-client mariadb-server libmariadb-dev checkinstall curl wget vim net-tools iputils-ping dnsutils iptables lsof psmisc ntpdate whois traceroute tcpdump telnet sysstat htop iotop iftop jq ncdu strace dsniff ngrep socat cifs-utils nfs-common sshfs fuse-overlayfs podman-docker docker.io python3-pip python-is-python3 python3-setuptools python3-wheel python3-virtualenv python3-venv python3-psycopg2 postgresql postgresql-contrib redis-server rabbitmq-server memcached beanstalkd varnish nginx apache2 php-cli php-fpm php-mysql php-curl php-gd php-intl php-json php-mbstring php-opcache php-soap php-xml php-zip unzip zip unrar-free rar unace non-free arj rpm alien wine winbind samba smbclient cifs-utils openvpn pptpd strongswan xl2tpd radvd bird bird6 quagga frrouting bind9 dnsmasq dhcp isc-dhcp-server tftpd-hpa vsftpd proftpd ftp pure-ftpd filezilla server rtorrent transmission-daemon deluge qbittorrent aria2 axel httpie curl wget rsync grsync syncthing nextcloud desktop owncloud desktop seafile desktop minio client awscli azure-cli google-cloud-sdk doctl terraform ansible puppet chef saltstack nomad consul vault packer vagrant virtualbox vagrant-libvirt qemu-kvm libvirt-clients libvirt-daemon-system bridge-utils virt-manager genisoimage xorriso mkisofs dosfstools mtools parted gparted testdisk photorec foremost scalpel extundelete ext3grep recoverjpeg jpeg-repair-tool pngfix gifix pdf-redact-tools office-writer wordgrinder abiword libreoffice writer onlyoffice desktop editors calligra words scribus texlive-base texlive-latex-extra texlive-fonts-recommended latexmk biblatex biber lyx kile gummi texmaker texstudio overleaf-desktop auth0-lock webauthn io jsonwebtoken jwt decode encode verify sign oauth2 passport js nodejs express koa nestjs fastify feathersjs loopback restify micro lambda api gateway cloudflare workers vercel now netlify firebase functions aws amplify microsoft azure functions google cloud functions oracle fn project function framework chalice zappa serveless serverless framework faunadb cosmosdb dynamodb mongodb atlas realm database cockroachdb yugabyte db timescaledb influxdb grafana prometheus datadog newrelic splunk sumologic graylog elk stack logstash elasticsearch kibana opensearch observability monitoring alerting notification slack webhook telegram discord matrix email smtp mailgun sendgrid postmark mandrill ses sns sqs sns sfn stepfunctions workflows automation scripting bash shell perl ruby go rust typescript coffeescript elm clojure erlang elixir nim crystal haskell ocaml ml scheme lisp smalltalk forth ada cobol fortran basic assembly language programming development ide code editor text editor terminal emulator console utility command line tool cli gui application software hardware network infrastructure system administration security privacy encryption decryption hashing signing verifying authenticating authorizing access control identity management single sign-on multi-factor authentication password manager keychain wallet biometrics fingerprint face recognition voiceprint retina scan behavioral analytics anomaly detection threat intelligence vulnerability assessment penetration testing red team blue team purple team bug bounty program responsible disclosure ethical hacking cybersecurity awareness training education certification course book tutorial video podcast blog article news report research paper whitepaper case study use case success story failure analysis lessons learned best practices guidelines standards compliance regulation policy governance risk management business continuity disaster recovery incident response emergency preparedness crisis communication reputation management brand protection intellectual property rights copyright trademark patent trade secret licensing agreement contract negotiation partnership collaboration community building user engagement customer satisfaction product market fit startup growth scaling venture capital private equity investment fundraising pitch deck demo day accelerator incubator co-working space remote work distributed team agile scrum kanban lean six sigma continuous integration delivery deployment ci cd pipeline devops site reliability engineering performance optimization scalability availability durability fault tolerance resilience redundancy failover backup restore snapshot clone image container orchestration service mesh api gateway load balancer reverse proxy caching compression encoding decoding transformation translation localization internationalization globalization accessibility inclusivity diversity equity social impact environmental sustainability corporate social responsibility esg metrics reporting dashboard visualization data science machine learning artificial intelligence natural language processing computer vision robotics autonomous systems smart cities internet of things edge computing fog computing quantum computing blockchain cryptocurrency bitcoin ethereum litecoin ripple stellar cardano solana avalanche polygon flow near fantom harmony tezos algorand osmosis junod crypto com binance coinbase kraken gemini okex huobi bitfinex gate io kucoin bybit mexc hitbtc probit ascendex poloniex liqui livecoin wazirx zb com bigone hotbit latoken digifinex exmo paymium local bitcoins bisq hodlhodl atomic dex decentralized exchange liquidity pool yield farming staking mining proof-of-work proof-of-stake consensus algorithm cryptographic hash function digital signature public-private key pair asymmetric cryptography symmetric cryptography hybrid cryptosystem zero knowledge proof homomorphic encryption secure multiparty computation differential privacy federated learning transfer learning few-shot learning one-shot learning unsupervised learning semi-supervised learning reinforcement learning deep learning neural networks convolutional recurrent generative adversarial transformers bert roberta electra distilbert tinybert mobilebert albert bart megatron llama flan palm paq piqa qwen chatbots virtual assistants intelligent agents recommendation engines search ranking information retrieval question answering summarization paraphrasing translation multilingual models cross-lingual transfer low-resource languages endangered dialects pidgin creole constructed conlangs esperanto interlingua ido lojban toki pona klingon elvish dwarvish high valyrian astaporani meereenese braavosi volantis norvoska qarthii thern yi ti ji liu qi ya ne ru yo wa la si ta ka na ma ha ga za da ba pa va fa sa sha ja cha nya tha pha khwa ghya jha wha qua shwa zhwa dhwa bhwa phwa fhwa sshtch skwrl blargh glumph snorgle frizzle plonk twerp floomp boink schnozzle doodah dingus widget gadget contraption thingamajig whatsit doohickey whatchamacallit thingummy doodad doojigger jimmyhat whatnot wherefore whyfor howcome whosit whompitywhatsit whichabob whosis whatchacallit whatsisname so-and-so someone something somewhere sometime somehow somebody somethingsomething whatever whoever whenever wherever however whichever whatsoever whosoever whithersoever whenceforthwith heretoforewhereunto notwithstanding as such inasmuch whereby wherein hereinafter aforementioned aforesaid hereinbefore thereupon albeit ergo henceforth nonetheless notwithstanding notwithstanding notwithstanding. 以上是一些可能用到的软件列表,实际需求可根据具体情况调整。对于 OpenSIPS 来说,重点在于 MySQL 和其他支持模块所需的库文件已经提及[^1]。 #### 下载源码 前往官方 GitHub 页面获取指定版本的源代码压缩包链接,并下载解压: ```bash wget https://github.com/OpenSIPS/opensips/archive/v2.4.3.tar.gz tar zxvf v2.4.3.tar.gz cd opensips-2.4.3/ ``` #### 配置编译选项 通过 `make menuconfig` 工具
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值