“慧同款”—基于深度学习的鞋类推荐系统

这是对暑期一个综合课设的自我总结
因为是小组完成,别人具体的部分这里就略去~
只体现自己部分以及最终结果~

设计目的

随着中国网络科技高速发展,以及中国居民可支配收入稳定增长,线上购物成为中国网民不可或缺的消费渠道之一,而网购用户对于线上购物所花费的金额也越来越多。
根据报告显示,2014年至2018年,中国网购交易金额从8950亿元增长至57370亿元,复合增长率84.6%;预计2019年,网购交易金额将达到66610亿元。另外截止到2019年10月,我国实物商品网上零售额达到6.5万亿元,同比增长19.8%,占社零总额比重为19.5%。
随着互联网普及程度的提高,中国网购用户规模自然也每年稳定增长。2016年6月至2019年6月,中国网购用户人数从44772万人增加到63882万人,网购使用率从63.1%提升至74.8%。
近几年淘宝、京东、亚马逊等网络购物平台日益流行,传统的一些导购网站因只支持对商品进行关键词搜索,无法展现很好的视觉效果,已经无法满足用户体验需求。现针对购物商城里海量鞋子图片以及现有的“拍照购”“找同款”等功能,设计出一款“慧同款”系统,方便用户在短时间内可以通过鞋子图片进行心仪款式的挑选和搭配,避免从海量图片和众多商城内寻找,进一步改善了用户的使用体验,实现更加便捷化和智能化线上购物。

设计描述与要求

在设计系统中,用户随意上传一张自己想要购买的鞋子种类图片,系统会根据设计的算法识别出该鞋子所属款式显示出来,并为用户汇集推荐该类别的其他同款鞋子,同时根据该鞋子所属类别与风格等因素给用户更多合适的搭配鞋子的服饰,用户可以点击心仪鞋子或服饰下方的链接即可直接跳转至所要购买的商品页面,从而避免从海量图片中和众多商城内寻找自己需要的款式和与鞋子相关的搭配,获得更高的针对性和准确率,也大大提升了用户的购买欲望。

针对设计目的中的系统需求,可以将要求具体到图像采集、深度分类模型搭建、前后端设计三个方面。

1、图像采集方面
图像采集分为两个部分,一部分是训练网络时使用的数据集,需要数据集的大小和数量,以便模型的训练与测试;另一部分是商品推荐的同款,需要覆盖分类所有种类且对应好各自的购物链接。

2、深度分类模型搭建
通过资料查找后,采用Python中已有的Tensorflow深度学习架构,依次完成图片数据的预处理,搭建模型,训练模型和测试模型的操作。图片数据的预处理包括打乱顺序、裁剪、分批次等,搭建模型需要通过分析采用的数据集大小,预期分类效果等情况进行模型选择,完成网络结构与参数设置,利用搭建模型进行训练与测试。比较不同模型及参数下测试时的准确性、速度、稳定性等指标,选择其中最适合的分类模型。

3、前后端设计
识别顾客提供的图片后需设计一个能实现上传图片与推荐显示商品等功能的界面。首先利用IDEA软件完成Web前端即界面设计部分,接着要对用户在网页上提供的图片信息进行上传、汇总、分析,最后回传给用户鞋子图片所属类别,需要搭建好后台服务器以及设计前后端交互方式,实现用户选择心仪鞋子种类的图片上传后,进行后台处理并返回页面相同款式的鞋子和搭配服饰,并且能打开推荐商品的链接进行购买。

设计内容

设计方案

1、图像采集
训练模型采用的图像除了来源于网上的一些公开数据库,还有部分是基于国内最大的搜索引擎进行爬虫而获取,通过百度图片,采用Python爬虫技术将需要的鞋子图片收集以填充训练集。
对于商品信息采集,这里我们推荐的商品选取自天猫商城,若想得到这些商品的详细信息并将其加载到前端即设计的界面,最好的方法是使用Python爬虫技术将这些数据存储到MySQL数据库中。

2、分类模型搭建与训练
根据系统要求,用户在上传一张图片后,后端要能够直接调用离线训练好的模型进行图片中鞋子款式的分类,并将分类结果与概率返回。
首先需要对输入模型的图片数据进行处理,即将图片数据处理为Tensorflow能够识别的数据格式,并将数据设计批次;接着利用卷积神经网络CNN进行处理,即搭建分类模型,选择合适的网络结构以及对网络中的参数进行配置;然后设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值