题目
未名湖附近共有N个大小湖泊L1, L2, …, Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, …, xn,请你给出每两个湖泊之间的相连关系。
Input
第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,…, xn(0 ≤ xi ≤ N)。
Output
对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。
Sample Input
3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1
Sample Output
YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0
NO
YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
解释
判断是否可图,借助Havel_Hakimi定理,判断顶点度数序列是否可图。
当出现不合理情况 则不可图
(1)某次排序涉嫌的最大度数超出剩余顶点数。
(2)对最大度数后的相应顶点减1,出现负数。
#include <cstdio>
#include <cstring>
#include <algorithm>
int const maxn = 15;
using namespace std;
int G[maxn][maxn];
struct node{
int num;
int degree;
}a[maxn];
int cmp(node a, node b){
return a.degree > b.degree;
}
int main(){
int t, n;
int flag;
int cont;
scanf("%d", &t);
while (t--){
scanf("%d", &n);
memset(G, 0, sizeof(G));
for (int i = 0; i < n; i++){
scanf("%d", &a[i].degree);
a[i].num = i;
}
flag = 1;
for (int i = 0; i < n && flag; i++){
sort(a+i, a+n, cmp);
cont = a[i].degree;
if(cont == 0)
break;
if (i + cont >= n) {
flag = 0;
}
for (int j = 1; j <= cont && flag; j++){
if (a[i+j].degree <= 0){
flag = 0;
break;
}
a[i+j].degree--;
G[a[i].num][a[i+j].num] = G[a[i+j].num][a[i].num] = 1;
}
}
if (flag){
printf("YES\n");
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
printf("%d%c", G[i][j], j == n-1 ?'\n':' ');
}
}
}
else{
printf("NO\n");
}
if (t)
printf("\n");
}
return 0;
}