Frogs' Neighborhood POJ - 1659(判读是否可图)

题目

未名湖附近共有N个大小湖泊L1, L2, …, Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N)。如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居。现在已知每只青蛙的邻居数目x1, x2, …, xn,请你给出每两个湖泊之间的相连关系。
Input

第一行是测试数据的组数T(0 ≤ T ≤ 20)。每组数据包括两行,第一行是整数N(2 < N < 10),第二行是N个整数,x1, x2,…, xn(0 ≤ xi ≤ N)。
Output

对输入的每组测试数据,如果不存在可能的相连关系,输出"NO"。否则输出"YES",并用N×N的矩阵表示湖泊间的相邻关系,即如果湖泊i与湖泊j之间有水路相连,则第i行的第j个数字为1,否则为0。每两个数字之间输出一个空格。如果存在多种可能,只需给出一种符合条件的情形。相邻两组测试数据之间输出一个空行。
Sample Input

3
7
4 3 1 5 4 2 1
6
4 3 1 4 2 0
6
2 3 1 1 2 1

Sample Output

YES
0 1 0 1 1 0 1
1 0 0 1 1 0 0
0 0 0 1 0 0 0
1 1 1 0 1 1 0
1 1 0 1 0 1 0
0 0 0 1 1 0 0
1 0 0 0 0 0 0

NO

YES
0 1 0 0 1 0
1 0 0 1 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

解释

判断是否可图,借助Havel_Hakimi定理,判断顶点度数序列是否可图。
当出现不合理情况 则不可图
(1)某次排序涉嫌的最大度数超出剩余顶点数。
(2)对最大度数后的相应顶点减1,出现负数。

#include <cstdio>
#include <cstring>
#include <algorithm>
int const maxn = 15;
using namespace std;
int G[maxn][maxn];
struct node{
	int num;
	int degree;
}a[maxn];
int cmp(node a, node b){
	return a.degree > b.degree;
}
int main(){
	int t, n;
	int flag;
	int cont;
	scanf("%d", &t);
	while (t--){
		scanf("%d", &n);
		memset(G, 0, sizeof(G));
		for (int i = 0; i < n; i++){
			scanf("%d", &a[i].degree);
			a[i].num = i;
		}
		flag = 1;
		for (int i = 0; i < n && flag; i++){
			sort(a+i, a+n, cmp);
			cont = a[i].degree;
			if(cont == 0)
				break;
			if (i + cont >= n) {
				flag = 0;	
			}
			
			for (int j = 1; j <= cont && flag; j++){
				
				
				if (a[i+j].degree <= 0){
					flag = 0;
					break;
				}
				a[i+j].degree--;
				G[a[i].num][a[i+j].num] = G[a[i+j].num][a[i].num] = 1;
			}

		}
		if (flag){
			printf("YES\n");
			for (int i = 0; i < n; i++){
				for (int j = 0; j < n; j++){
					printf("%d%c", G[i][j], j == n-1 ?'\n':' ');
				}
			} 
		}
		else{
			printf("NO\n");
		}
		if (t)
			printf("\n");
	} 

	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值