Unix中的文件(1)

1 文件系统 对文件的处理依赖于操作系统中的文件系统; 而操作系统的启动却需要存储在文件系统中的操作系统文件; ——Linux是如何完成这个“鸡生蛋、蛋生鸡”的过程 1.1 Linux系统启动流程 加载BIOS的硬件信息与进行自我测试,并依据设置取得第一个可启动的设备; 读取并执行第一个启动设备...

2018-10-21 22:12:48

阅读数 60

评论数 0

mac+vscode+go环境搭建

1. 安装Go 使用安装包或brew安装go brew install go 2. 配置Go环境+安装vscode https://www.jianshu.com/p/0b2b80336d47 3. 安装vscode插件 vscode自动安装插件失败的情况下: http://...

2018-08-27 21:59:53

阅读数 952

评论数 0

mac操作

1. 设置快捷键新建文件 https://blog.csdn.net/coder_zzy/article/details/66477485 按上述步骤能够在服务中找到“新建文本文件”之后:在“系统偏好设置->键盘->快捷键->服...

2018-08-27 21:31:11

阅读数 139

评论数 0

mac下PHP环境配置常用操作

1 安装composer https://www.jianshu.com/p/fd1b53df3f4b 2 修改为国内镜像 https://pkg.phpcomposer.com/ 4 安装homebrew https://www.jianshu.com/p/4e80b42823...

2018-08-16 13:09:07

阅读数 56

评论数 0

Qt实现的软件外观

我2014年使用Qt实现了一个软件: 其基本外观如下: 插入试管: 菜单的外观项: 数据管理的外观: 质控页面的外观:

2018-03-03 15:27:46

阅读数 258

评论数 0

C++的多态

虽然没有学过Java,但是很喜欢Java的干净、统一,没有特别多的意外情况。因为Java里“一切皆是对象”。所有的类型都继承自Object类型,所以能写出一个适用于一切类型的函数。这是一个良好的实践,符合设计模式的基本特征。 所以当我们看许多C++框架的时候,这个框架都会有一个Object类,框...

2018-02-10 19:59:12

阅读数 166

评论数 0

C++动态内存

1. 堆(heap) 关于操作系统的内存管理的具体内容可以看《深入了解计算机系统》第九章——虚拟存储器。 进程内存分布图如下: 动态内存分布主要发生在heap上,对于每个进程,内核维护一个变量brk,指向heap的顶部。访问超过brk的地址,将会发生错误。 那么heap是什么呢? h...

2018-02-09 12:21:24

阅读数 138

评论数 0

机器学习(十二):推荐系统的两种观点

1. 从物理意义出发的观点什么是推荐系统?以电影推荐为例,就是对于一部电影,我们预测某个用户对一部电影的评分。 我们用如上所示符号来表示。值得注意的是,很有可能用户没有给某电影打分,此时r(i,j)=0r(i,j)=0。这里需要理清: 对于一个电影,我们需要找到一些特征空间XX来衡量这个电影;...

2017-02-10 16:28:56

阅读数 1957

评论数 0

机器学习(十一):K-Means算法

1. K-Means1.1 核函数的另一种观点之前我们提到过高斯核函数:K(x1,x2)=ϕ(x1)ϕ(x2)=exp(η||x1−x2||2)K(x_1,x_2)=\phi(x_1)\phi(x_2)=exp(\eta||x_1-x_2||^2)当时我们是把ϕ(x)\phi(x)当做对x进行无限...

2017-02-10 12:03:18

阅读数 958

评论数 0

机器学习(十):PCA

1. PCA1.1 PCA算法为什么要使用主成分分析?正如名字所示,其目的显而易见,不再赘述,此处从自动编码器的角度审视PCA。 最小化如下损失函数:C=12m∑i=1m||y(i)−WWTx(i)||2C=\frac 1{2m} \sum_{i=1}^m ||y^{(i)}-WW^Tx^{...

2017-02-09 21:08:13

阅读数 549

评论数 0

机器学习(九):神经网络(2)——深度学习

1. 深度学习为什么难训练?之前提到过深度学习,那么深度学习跟普通的神经网络相比,难点在于哪里呢?1.1 梯度的不稳定性深度学习的根本问题在于梯度的不稳定性。 σ导数在 σ′(0) = 1/4 时达到最⾼。现在,如果我们使⽤标准⽅法来初始化⽹络中的权重,那么会使⽤⼀个均值为 0 标准差为 1...

2017-02-09 11:53:27

阅读数 776

评论数 0

机器学习(八):神经网络(1)

(主要参考书籍《神经网络与深度学习》)1. 什么是神经网络1.1 从感知器说起……什么是感知器?很简单,前面我们已经说过了: output=sign(wTx)output=sign(w^Tx) 什么意思呢?我们有一些输入,我们会根据这些输入做出一个决定:YES OR NOT。我们可能会想这...

2017-02-08 21:13:51

阅读数 2377

评论数 0

机器学习(七):集成方法(2)Boost

Boost(提升)方法不同于bagging,基分类器是顺序训练的,每个基分类器使⽤数据集的⼀个加权形式进⾏训练,其中与每个数据点相关联的权系数依赖于前⼀个分类器的表现。特别地,被⼀个基分类器误分类的点在训练序列中的下⼀个分类器时会被赋予更⾼的权重。⼀旦所有的分类器都训练完毕,那么它们的预测就会通过...

2017-02-05 19:40:44

阅读数 2054

评论数 0

机器学习(六):集成算法(1)Bagging

1.Aggregation概论1.1 引言三个臭皮匠,顶个诸葛亮。 假设我们有多个预测模型g1,g2...gTg_1,g_2...g_T,能不能将这些模型组合起来,获得更好的性能?回想一下,之前我们Validation:是在多个模型中选择出一个好的模型,现在问题变成了:多个模型组合出一个更好的模...

2017-02-05 12:00:29

阅读数 844

评论数 0

机器学习(五):w·x+b模型(2)

3. 支持向量机SVMSVM主要用于分类问题,w∈Rn,b∈R,y∈{−1,1}w\in R^n, b\in R, y\in \{-1,1\}(注意此处不再将b视为w0w_0)3.1 引言3.1.1 training set完全线性可分假设有很多wx+b=0超平面可以将training set中的...

2017-02-04 16:06:53

阅读数 1743

评论数 0

机器学习(四):w·x+b模型(1)

假设输入空间x∈Rnx\in R^n, 对于分类问题,我们使用的假设空间为H={h=sign(wTx+b)|w∈Rn,b∈R}H=\{h=sign(w^Tx+b)| w\in R^n, b\in R\} 对于回归问题,我们使用的假设空间为H={h=wTx+b|w∈Rn,b∈R}H=\{h=w^...

2017-01-17 17:39:43

阅读数 2618

评论数 0

机器学习(三):拉格朗日乘子与梯度下降法

这里介绍两个在以后的机器学习算法中经常使用的技巧:拉格朗日乘子(Lagrange multiplier)和梯度下降法(Gradient descent)。1. 拉格朗日乘子法拉格朗日乘子被⽤于寻找多元变量在⼀个或者多个限制条件下的驻点。1.1 等式约束条件考虑这样一个问题: 求解f(x1,x2)...

2017-01-16 21:58:24

阅读数 5571

评论数 0

机器学习(二):如何使用机器学习来解决一个问题?

给定一个问题,如何设计机器学习系统来解决此问题?1. 机器学习流水线1.1设计问题的流水线什么是“machine learning pipeline”?对于一个由多个阶段/模块组成的系统,当系统中含有机器学习的阶段/模块时,我们就说这是一个机器学习流水线。 Photo OCR问题:识别图片中的文...

2017-01-16 16:43:21

阅读数 2612

评论数 0

机器学习(一):统计学习问题概述

学习:“如果一个系统能够通过执行某个过程改进它的性能,这就是学习。”按照这一观点,统计学习就是计算机系统通过运用数据及统计方法提供系统性能的机器学习。 机器学习的对象是数据,它从数据出发,提取数据特征,抽象出数据模型,发现数据中的知识,又回到对数据的分析和预测中去。[机器学习关于数据的基本假设是...

2017-01-15 20:29:36

阅读数 1657

评论数 0

Qt学习笔记外观篇(八):QComboBox

QComboBox是Qt中的下拉表单,其功能

2014-08-30 19:44:28

阅读数 9164

评论数 0

提示
确定要删除当前文章?
取消 删除